Skip to main content
Log in

Evaluation of the Optical and Structural Properties of Constructed Bis-indole Derivatives Using (Sm2O3/SiO2) Catalyst

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

(SiO2/Sm2O3) was successfully synthesized and examined using scanning electron microscopy; X-ray diffraction and Fourier transform infrared spectroscopy. Obtained data shows the formation of crystalline phase superimposed over the silicate amorphous matrix. The synthesized catalyst was used for eco-friendly synthesis of bis-indole derivatives. Two moles of indole and different aromatic aldehyde were mixed and heterocyclic aldehydes have been adopted in-expensive, recyclable, easily prepared and nontoxic catalyst (SiO2/Sm2O3) under solvent free conditions. The chemical structures of the synthesized compounds have been introduced and correlated with UV/vis. optical absorption spectra in combination with (HOMO-LUMO) through experimental spectrophotometric data in both direct-indirect transitions and that obtained based of density functional theory (DFT).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nasrollahzadeh M, Habibi D, Shahkarami Z, Bayat Y (2009) A general synthetic method for the formation of arylaminotetrazoles using natural natrolite zeolite as a new and reusable heterogeneous catalyst. Tetrahedron 65:10715–10719

    Article  CAS  Google Scholar 

  2. Habibi D, Nasrollahzadeh M (2010) Silica-supported ferric chloride (FeCl3-SiO2): an efficient and recyclable heterogeneous catalyst for the preparation of arylaminotetrazoles. Synth Commun 40:3159–3167

    Article  CAS  Google Scholar 

  3. Fahy E, Potts BC, Faulkner DJ, Smith K (1991) 6-Bromotryptamine derivatives from the Gulf of California tunicate didemnum candidum. J Nat Prod 54:564–569

    Article  CAS  Google Scholar 

  4. Garbe TR, Kobayashi M, Shimizu N, Takesue N, Ozawa M, Yuka-wa H (2000) Indolyl carboxylic acids by condensation of indoles with α-keto acids. J Nat Prod 63:596–598

    Article  CAS  PubMed  Google Scholar 

  5. Rahimizadeh M, Eshghi H, Bakhtiarpoor Z, Pordel M (2009) Ferric hydrogensulfate as a recyclable catalyst for the synthesis of some new bis(indolyl)methane derivatives. J Chem Res 5:269–270

    Article  Google Scholar 

  6. Kobayashi M, Aoki S, Gato K, Matsunami K, Kurosu M, Kitagawa I (1994) Marine natural products. XXXIV. Trisindoline, a new antibiotic indole trimer, produced by a bacterium of Vibrio sp. separated from the marine sponge hyrtios altum. Chem Pharm Bull 42:2449–2451

    Article  CAS  PubMed  Google Scholar 

  7. Sivaprasad G, Perumal PT, Prabavathy VR, Mathivanan N (2006) Synthesis and anti-microbial of pyrazolylbisindoles-promissing antifungal compounds. Bioorg Med Chem Lett 16:6302–6305

    Article  CAS  PubMed  Google Scholar 

  8. Kamal A, Khan MNA, Reddy KS, Srikanth YVV, Ahmed SK, Kumar KP, Murthy USNJ (2009) An efficient synthesis of bis(indolyl)methanes and evaluation of their antimicrobial activities. Enzyme Inhib Med Chem 24:559–565

    Article  CAS  Google Scholar 

  9. Porter JK, Bacon CW, Robins JD, Himmel-sbach DS, Higman HC (1977) Indole alkaloids from Balansia epichloe (Weese). J Agri Food Chem 25:88–93

    Article  CAS  Google Scholar 

  10. Benabadji SH, Wen R, Zheng J, Dong X, Yuan S (2004) Anticarcinogenic and antioxidant activity of diindolylmethane derivatives. Acta Pharmacol Sin 25:666–671

    CAS  PubMed  Google Scholar 

  11. Giannini G, Marzi M, Tinti MO, Pisano C (2000) International patent. WO0236597. Chem Abstr 136:355230

    Google Scholar 

  12. Valeria L, Ernesto M (1998) EP0887348 A1

  13. Valeria L, Ernesto M, Ambrogio O, Frank G, Hans-Willi K (2000) EP0991645

  14. Pal C, Dey S, Mahato SK, Vinayagam J, Pradhan PK, Giri VS, Jaisankar P, Hossain T, Baruri S, Raya D, Biswas SM (2007) Eco-friendly synthesis and study of new plant growth promoters: 3,3’-diindolylmethane and its derivatives. Bioorg Med Chem Lett 17:4924–4928

    Article  CAS  PubMed  Google Scholar 

  15. Sujatha K, Perumal PT, Muralidharan D, Rajendran M (2009) Synthesis, analgesic and anti-inflammatory activities of bis(indolyl)methanes. Indian J Chem 48B:267–272

    CAS  Google Scholar 

  16. Kamble VT, Kadam KR, Joshi NS, Muley DB (2007) HClO4 −SiO2 as a novel and recyclable catalyst for the synthesis of bis-indolylmethanes and bis-indolylglycoconjugates. Catal Commun 8:498–502

    Article  CAS  Google Scholar 

  17. Farhanullah A, Sharon PR, Maulik VJ (2004) Amberlyst 15 catalyzed synthesis of indole-pyrazole based tri(hetero)arylmethanes. Tetrahedron Lett 45:5099–5102

    Article  CAS  Google Scholar 

  18. Karthik M, Mageshk CJ, Perumal PT, Palanichamy M, Arabindoo B, Murugesan V (2005) Zeolite-catalyzed ecofriendly synthesis of vibrindole A and bis(indolyl)methanes. Appl Catal A 286:137–141

    Article  CAS  Google Scholar 

  19. Karthik M, Tripathi AK, Gupta NM, Palanichamy M, Murugesan V (2004) Zeolite catalyzed electrophilic substitution reaction of indoles with aldehydes: synthesis of bis(indolyl)methanes. Catal Commun 5:371–375

    Article  CAS  Google Scholar 

  20. Tadi K, Chang Y, Ashok BT, Chen Y, Moscatello A, Schaefer SD, Schantz ST, Policastro AJ, Geliebter J, Tiwari RK (2005) 3, 3’-Diindolylmethane, a cruciferous vegetable derived synthetic anti-proliferative compound in thyroid disease. Biochem Biophys Res Commun 337:1019–1025

    Article  CAS  PubMed  Google Scholar 

  21. Kumar GSS, Prabu AM, Jenniefer SJ, Bhuvanesh N, Muthiah BP, Kumaresan S (2013) Syntheses of phenoxyalkyl esters of 3,3’-bis(indolyl)methanes and studies on their molecular properties from single crystal XRD and DFT techniques. J Mol Struct 1047:109–120

    Article  CAS  Google Scholar 

  22. Gill CH, Joshi RS, Mandhane PG, Diwakar SD (2010) Ultrasound assisted green synthesis of bis(indol-3-yl)methanes catalyzed by 1-hexenesulphonic acid sodium salt. Ultrason Sonochem 17:298–300

    Article  CAS  PubMed  Google Scholar 

  23. Hasaninejad A, Shekouhy M, Zare A, Ghattali SMSH, Golzar N (2011) PEG-SO3H as a new, highly efficient and homogeneous polymeric catalyst for the synthesis of bis(indolyl)methanes and 4,4’-(arylmethylene)-bis(3-methyl-1-phenyl-1H pyrazol-5-ol)s in water. J Iran Chem Soc 8:411–423

    Article  CAS  Google Scholar 

  24. Khaksar S, Ostad SM (2011) Pentafluorophenylammonium triflate as an efficient, environmentally friendly and novel organocatalyst for synthesis of bisindolyl methane derivatives. J Fluorine Chem 132:937–939

    Article  CAS  Google Scholar 

  25. Kolvari E, Zolfigol MA, Banary H (2011) Synthesis of bis(indolyl)methanes using molten N-butylpyridinium bromide. Chin Chem Lett 22:1305–1308

    Article  CAS  Google Scholar 

  26. Qu HE, Xiao C, Wang N, Yu KH, Hu QS, Liu LX (2011) RuCl3 ⋅3H2O catalyzed reactions: facile synthesis of Bis(indolyl)methanes under mild conditions. Molecules 16:3855–3868

    Article  CAS  PubMed  Google Scholar 

  27. Kamble S, Rashinkar G, Kumbhar A, Salunkhe R (2012) Hydrotrope induced catalysis in water: a clean and green approach for the synthesis of medicinally relevant bis(indolyl)methanes and 2-aryl benzimidazoles. Synth Commun 42:756–766

    Article  CAS  Google Scholar 

  28. Yadav JS, Reddy BVS, Murthy CVSR, Kumar GM, Madan C (2001) Lithium perchlorate catalyzed reactions of indoles: an expeditious synthesisof Bis(indolyl)methanes. Synthesis 5:783–787

    Article  Google Scholar 

  29. Ramesh C, Banerjee J, Pal R, Das B (2003) Silica supported sodium hydrogen sulfate and amberlyst-15: two efficient heterogeneous catalysts for facile synthesis of Bis- and Tris(1H-indol-3-yl)methanes from indoles and carbonyl compounds. Adv Synth Catal 345:557–559

    Article  CAS  Google Scholar 

  30. Chakrabarty M, Ghosh N, Basak R, Harigaya Y (2002) Two efficient heterogeneous catalysts for facile synthesis of. Bis- and Tris(1H-indol-3-yl)methanes from indoles and carbonyl. Compounds. Tetrahedron Lett 43:4075–4078

    Article  CAS  Google Scholar 

  31. Seyedi N, Khabazzadeh H, Saidi K (2009) Cu1.5PMo12O40 as an efficient, mild and heterogeneous catalyst for the condensation of indole with carbonyl compounds. Mol Divers 13:337–342

    Article  CAS  PubMed  Google Scholar 

  32. Nakamoto K (1977) Infrared and raman spectra of inorganic and coordination compounds. Wiley Inter Science, New York

    Google Scholar 

  33. Kirk CT (1988) Quantitative analysis of the effect of disorder-induced mode coupling on infrared absorption in silica. Phys Rev B8(2):1255–1273

    Article  Google Scholar 

  34. Najafi M, Yousefi Y, Rafati AA (2012) Synthesis, characterization and adsorption studies of several heavy metal ions on amino-functionalized silica nano hollow sphere and silica gel. Sep Purif Technol 85:193–205

    Article  CAS  Google Scholar 

  35. Hassan AF, Abdelghany AM, Elhadidy H, Youssef AM (2014) Synthesis and characterization of high surface area nanosilica from rice husk ash by surfactant-free sol-gel method. J Sol-Gel Sci Technol 69(3):465–472

    Article  CAS  Google Scholar 

  36. Soliman HA, Khatab TK (2014) Efficient heterogeneous catalytic one-pot, three-component synthesis of γ-hydroxy-β-ketoamide. Egypt J Chem 57:129–142

    Article  Google Scholar 

  37. Soliman HA, Khatab TK (2016) New approach for tetrachlorosilane promoted One-Pot, condensation reaction for Tetrahydrobenzo[a]Xanthene-11-Ones with docking validation as Aurora Kinase Inhibitor. Silicon, Published Online. https://doi.org/10.1007/s12633-016-9421-0

  38. Soliman HA, Khatab TK (2016) Utilization of bromine azide to access vicinal-azidobromides from arylidene malononitrile, vol 27

  39. Soliman HA, Khatab TK (2016) V2 O 5/SiO2 as a heterogeneous catalyst in the synthesis of bis(indolyl)metanes under solvent free condition. Silicon, Published Online. https://doi.org/10.1007/s12633-016-9515-8

  40. Ji S-J, Wang S-Y, Zhang Y, Loh T-P (2004) Facile synthesis of bis(indolyl)methanes using catalytic amount of iodine at room temperature under solvent-free conditions. Tetrahedron 60:2051–2055

    Article  CAS  Google Scholar 

  41. Kamal A, Qureshi AA (1963) Syntheses of some substituted di-indolylmethanes in aqueous medium at room temperature. Tetrahedron 19:513–520

    Article  CAS  Google Scholar 

  42. Esmaielpour M, Akhlaghinia B, Iahanshahi R (2017) Green and efficient synthesis of aryl/alkylbis(indolyl)methanes using expanded Perlite-PPA as a heterogeneous solid acid catalyst in aqueous media. J Chem Sci 129:313–328

    Article  CAS  Google Scholar 

  43. Bandgar BP, Patil AV, Kamble VT (2007) Fluoroboric acid adsorbed on silica gel catalyzed synthesis of bisindolyl alkanes under mild and solvent-free conditions. Arkivoc 16:252–259

    Google Scholar 

  44. Rekha M, Manjunath HR, Nagaraju N (2013) Mn/Al2 O 3 and Mn/ZrO2 as selective catalysts for the synthesis of bis(indolyl)methanes: The role of surface acidity and particle morphology. J Ind Eng Chem 19:337–346

    Article  CAS  Google Scholar 

  45. Azizi N, Torkian L, Saidi MR (2007) Highly efficient synthesis of bis(indolyl)methanes in water. J Mol Catal A: Chem 275:109–112

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamer K. Khatab.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khatab, T.K., Abdelghany, A.M., Shaker, N. et al. Evaluation of the Optical and Structural Properties of Constructed Bis-indole Derivatives Using (Sm2O3/SiO2) Catalyst. Silicon 10, 2173–2179 (2018). https://doi.org/10.1007/s12633-017-9747-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-017-9747-2

Keywords

Navigation