Skip to main content
Log in

Decoration of MWNTs by CdS Nanoparticles Using Magnetron Sputtering Method

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Carbon nanotubes (CNTs) modified with semiconductor nanocrystalline particles may find wide applications due to their unique properties. Here Cadmium Sulfide (CdS) nanoparticles were successfully grown on Multi-Walled Carbon Nanotubes (MWNTs) via a magnetron sputtering method for the first time. The CdS/MWNTs sample was characterized with X-ray diffraction (XRD), Field Emission Scanning and High Resolution Transmission Electron Microscopies (SEM/TEM) and four point probe. The obtained images show clearly the decoration of the MWNTs by the CdS nanoparticles, and the XRD measurements indicate the CdS structure as hexagonal type. Moreover, the physical properties of the CdS/MWNTs were compared with the physical properties of the CdS nanoparticles grown on the silicon. Electrical measurements of CdS and CdS/MWNTs reveal that CdS/MWNTs has lower resistivity than the CdS sample which may be due to the higher carrier concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dresselhaus MS, Dresselhaus G, Eklund PC (1996) Science of fullerenes and carbon nanotubes. Academic Press, San Diego

    Google Scholar 

  2. De Heer WA (2004) Mater Res Soc Bullet 29:281

    Article  CAS  Google Scholar 

  3. Harris PJF (1999) Carbon nanotubes and related structures: new materials for the twenty-first century. Cambridge University Press, Cambridge

    Book  Google Scholar 

  4. Hu J, Ouyang M, Yang P, Lieber CM (1999) Nature 399:48–51

    Article  CAS  Google Scholar 

  5. Kawano T, Christensen D, Chen S, Cho CY, Lin LW (2006) Appl Phys Lett 89:163510

    Article  Google Scholar 

  6. Kuo CS, Tseng YH, Lin HY, Huang CH, Shen CY, Li Y, Shah SI, Huang CP (2007) Nanotechnology 18:46

    Article  Google Scholar 

  7. An GM, Na N, Zhang XR, Miao ZJ, Miao SD, Ding KL, Liu ZM (2007) Nanotechnology 18:43

    Google Scholar 

  8. Wang X, Xia BY, Zhu XF, Chen JS, Qiu SL, Li JX (2008) Solid State Chem 181(4):822–827

    Article  CAS  Google Scholar 

  9. Liu J, Li X, Dai LM (2006) Adv Mater 18(3):1740–1744

    Article  CAS  Google Scholar 

  10. Fan XB, Tan FY, Zhang GL, Zhang FB (2007) Mater Sci Eng A 454-455:37–42

    Article  Google Scholar 

  11. Wang ZY, Chen G, Xia DG (2008) Power Sources 184(2):432–436

    Article  CAS  Google Scholar 

  12. Olek M, Busgen T, Hilgendorff M, Giersig M (2006) J Phys Chem B 110:12901–12904

    Article  CAS  Google Scholar 

  13. Profumo A, Fagnoni M, Merli D, Quartarone E, Protti S, Dondi D (2006) Anallatical Chem 78:4194–4199

    Article  CAS  Google Scholar 

  14. Zhao YB, Chen TT, Zou JH, Shi WF (2005) J Cryst Growth 275:521–527

    Article  CAS  Google Scholar 

  15. Banerjee S, Wong SS (2004) Adv Mater 16:34–37

    Article  CAS  Google Scholar 

  16. Yang Y, Wang HY, Lu XF, Zhao YY, Li X, Wang X (2007) Mater Sci Eng B 140:48–52

    Article  CAS  Google Scholar 

  17. Kim H, Sigmund W (2003) J Cryst Growth 255:114–118

    Article  CAS  Google Scholar 

  18. Cho N, Choudhury KC, Thapa RB, Sahoo Y, Ohulchansky TA, Cartwright N (2007) Adv Mater 19:232–236

    Article  CAS  Google Scholar 

  19. Liu Y, Gao L (2005) Mater Chem Phys 91:365–369

    Article  CAS  Google Scholar 

  20. Robel I, Bunker B, Kamat PV (2005) Adv Mater 17:2458–2463

    Article  CAS  Google Scholar 

  21. Paul R, Kumbhakar P, Mitra AK (2010) Mater Sci Eng B 167:97

    Article  CAS  Google Scholar 

  22. Banerjee S, Wong SS (2002) Nano Lett 2:195–200

    Article  CAS  Google Scholar 

  23. Ravindran S, Chaudhury S, Colburn B, Ozkan M (2003) Nano Lett 3:447–453

    Article  CAS  Google Scholar 

  24. Haremza JM, Hahn MA, Krauss TD, Chen S, Calcines J (2002) Nano Lett 2:1253–1258

    Article  CAS  Google Scholar 

  25. Lee SW, Sigmund WM (2003) Chem Commun:780–781

  26. Fu Q, Lu C, Liu J (2002) Nano Lett 2:329–332

    Article  CAS  Google Scholar 

  27. Seeger T, Kohler T, Frouenheim T, Grobert N, Ruhle M, Terrones M, Seifert G (2002) Chem Commun:34–35

  28. Duan X, Huang Y, Agarwal R, Lieber CM (2003) Nature 421:241

    Article  CAS  Google Scholar 

  29. Singh VP, Singh RS, Thompson GW, Jayaraman V, Sanagapalli S, Rangari VK (2004) Solar Energy Mater Solar Cells 81:293

    Article  CAS  Google Scholar 

  30. Zhang H, Ma X, Ji Y, Xu J, Yang D (2003) Chem Phys Lett 377:654

    Article  CAS  Google Scholar 

  31. Chediak JA, Luo Z, Seo J, Cheung N, Lee LP, Sands TD (2004) Sens Actuators A 111:1

    Article  CAS  Google Scholar 

  32. Jang JS, Li W, Oh SH, Lee JS (2006) Chem Phys Lett 425:278

    Article  CAS  Google Scholar 

  33. Kida T, Guan G, Yoshida A (2003) Chem Phys Lett 371:563

    Article  CAS  Google Scholar 

  34. Kashiwaba Y, Komatsu T, Nishikawa M, Ishikawa Y, Segawa K, Hayasi Y (2002) Thin Solid Films 408:43

    Article  CAS  Google Scholar 

  35. Ullrich B, Tomm JW, Dushkina NM, Tomm Y, Sakai H, Segawa Y (2000) Solid State Commun 116:33

    Article  CAS  Google Scholar 

  36. Ulrich B, Sakai H, Segawa Y (2001) Thin Solid Films 385:220

    Article  Google Scholar 

  37. Jiang XL, Tong DS, Liu ZM, Luo MZ, Li Y, Lu PX, Yang G, Long H (2008) Thin Solid Films 516:2003–2008

    Article  Google Scholar 

  38. Moutinho HR, Albin D, Yan Y, Dhere RG, Li X, Perkins C, Jiang CS, To B, AlJassim MM (2003) Thin Solid Films 436:175

    Article  CAS  Google Scholar 

  39. Uda H, Yonezawa H, Ohtsubo Y, Kosaka M, Sonomura H (2003) Solar Energy Mater Solar Cells 75:219

    Article  CAS  Google Scholar 

  40. Ravichandran K, Philominathan P (2008) Solar Energy 82:062

    Article  Google Scholar 

  41. Mondal SP, Dhar A, Ray SK (2007) Mater Sci Semicond Process 10:185

    Article  CAS  Google Scholar 

  42. Moon BS, Lee JH, Jung H (2006) Thin Solid Films 511:299

    Article  Google Scholar 

  43. Wells AF (1984) Structural inorganic chemistry, 5th edn. Science Publication, Oxford

    Google Scholar 

  44. Gibson PN, Ozsan ME, Lincot D, Cowache P, Summa D (2000) Thin Solid Films 34:361–362

    Google Scholar 

  45. Ricolleau C, Audinet L, Gandais M, Gacoin T (1998) Thin Solid Films 336:213

    Article  Google Scholar 

  46. Huang Q, Gao L (2004) Nanotechnology 15:1855–1860

    Article  CAS  Google Scholar 

  47. Liu B, Lee JY (2005) J Phys Chem B 109:23783–23786

    Article  CAS  Google Scholar 

  48. Banerjee S, Khan MJC, Wong SS (2003) Chem Eur J 9:1898

    Article  CAS  Google Scholar 

  49. Senthil K, Mangalaraj D, Narayandass SK (2001) Appl Surf Sci 169:476

    Article  Google Scholar 

  50. Moon BS, Lee JH, Jung H (2006) Thin Solid Films 511(/512):399–403

    Google Scholar 

  51. Bonn RR, Sandoval Inda NC, Espinosa Beltran FJ (1997) J Phys Condens Matter 9:10051

    Article  Google Scholar 

  52. Zelaya Angel O, Alvarado Gil JJ, Lozada Morales R (1994) Appl Phys Lett 64:291

    Article  CAS  Google Scholar 

  53. Bakke JR, Jung HJ, Bent SF (2010) Chem Mater 22:4669

    Article  CAS  Google Scholar 

  54. Nair PK, Gomez Daza O, Carbajal Roadigos AA, Campos J, Nair MTS (2001) Semicond Sci Technol 16:651

    Article  CAS  Google Scholar 

  55. Robel I, Bunker B, Kamart P (2005) Adv Mater 17:2458

    Article  CAS  Google Scholar 

  56. Cai Z, Yan X (2006) Nanotechnology 17:4212

    Article  CAS  Google Scholar 

  57. Taabouche A, Bouabello A, Kermiche F, Hanini F, Menakh S, Bouachiba Y, Kerdja T, Benazzouz C, Bouafia M, Amara S (2013) Adv Mater Phys Chem 3:209

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Ghorannevis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghorannevis, Z., Akbarnejad, E., Aghazadeh, B. et al. Decoration of MWNTs by CdS Nanoparticles Using Magnetron Sputtering Method. Silicon 10, 709–714 (2018). https://doi.org/10.1007/s12633-016-9516-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-016-9516-7

Keywords

Navigation