Skip to main content
Log in

Stain Etched Nanostructured Porous Silicon: The Role of Morphology on Antibacterial Drug Loading and Release

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

In this work, nanostructured porous silicon (pSi) prepared by a metal-assisted stain etched route is investigated for its ability to act as a carrier for sustained delivery of the antibacterial drug triclosan. The morphology, analyzed by transmission electron microscopy, reveals a rather different microstructure than traditional anodized porous silicon; as a consequence, such morphology manifests a different loaded drug crystallinity, triclosan release behavior, and associated antibacterial activity versus Staphococcus aureus relative to high porosity anodized porous silicon. In addition to electron microscopies and antibacterial disk diffusion assays, a combination of x-ray diffraction, thermogravimetric analyses, and UV/Vis spectrophotometric analysis of triclosan release are employed to carry out the above investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chan S, Fauchet PM, Li Y, Rothberg LJ, Miller BL (2000) Porous silicon microcavities for biosensing applications. Phys Status Solidi A 182:541–546

    Article  CAS  Google Scholar 

  2. Orosco MM, Pacholski C, Sailor MJ (2009) Real-time monitoring of enzyme activity in a mesoporous silicon double layer. Nat Nanotechnol 4:255–258

    Article  CAS  Google Scholar 

  3. Bonanno L, Segal E (2011) Nanostructured porous silicon-polymer-based hybrids: from biosensing to drug delivery. Nanomedicine 6:1755–1770

    Article  CAS  Google Scholar 

  4. Rodriguez GA, Lawrie JL, Weiss SM (2014) Nanoporous silicon biosensors for DNA sensing. In: Santos H (ed) Porous silicon for biomedical applications. Woodhead Publishing, Cambridge, pp 304–333

    Chapter  Google Scholar 

  5. Coffer JL, Montchamp JL, Aimone JB, Weis RP (2003) Routes to calcified porous silicon: implications for drug delivery and biosensing. Phys Status Solidi A 197:336–339

    Article  CAS  Google Scholar 

  6. Salonen J, Kaukonen AM, Hirvonen J, Lehto V (2008) Mesoporous silicon in drug delivery applications. J Pharm Sci 97:632–651

    Article  CAS  Google Scholar 

  7. Anglin EJ, Cheng L, Freeman WR, Sailor M J (2008) Porous silicon in drug delivery devices and materials. Adv Drug Deliv Rev 60:1266–1277

    Article  CAS  Google Scholar 

  8. Lehto V-P, Riikonen J (2014) Drug loading and characterization of porous silicon materials. In: Santos H (ed) Porous silicon for biomedical applications. Woodhead Publishing, Cambridge, pp 337–355

    Chapter  Google Scholar 

  9. Bowditch AP, Waters K, Gale H, Rice P, Scott EAM, Canham LT, Reeves CL, Loni A, Cox TI (1999) In vivo assessment of tissue compatibility and calcification of bulk and porous silicon. Mater Res Soc Symp Proc 536:149–154

    Article  CAS  Google Scholar 

  10. Canham LT (2014) Pore volume (porosity) in porous silicon. In: Canham LT (ed) Handbook of porous silicon. Springer International, Switzerland, pp 135–142

    Google Scholar 

  11. Buriak JM (2002) Organometallic chemistry on silicon and germanium surfaces. Chem Rev 102:1271–1308

    Article  CAS  Google Scholar 

  12. Loni A (2014) Milling of porous silicon microparticles. In: Canham LT (ed) Handbook of porous silicon. Springer International, Switzerland, pp 695–705

    Google Scholar 

  13. Joo J, Cruz JF, Vijayakumar S, Grondek J, Sailor MJ (2014) Photoluminescent porous Si/SiO2 core/shell nanoparticles prepared by borate oxidation. Adv Funct Mater 24:5688–5694

    Article  CAS  Google Scholar 

  14. Tasciotti E, Liu X, Bhavane R, Plant K, Leonard AD, Price BK, Cheng MM, Decuzzi P, Tour J M, Robertson F, Ferrari M (2008) Mesoporous silicon particles as a multistage delivery system for imaging and therapeutic applications. Nat Nanotechnol 3:151–157

    Article  CAS  Google Scholar 

  15. Li X, Coffer JL, Chen Y, Pinizzotto RF, Newey J, Canham LT (1998) Transition metal complex-doped hydroxyapatite layers on porous silicon. J Am Chem Soc 120:11706–11709

    Article  CAS  Google Scholar 

  16. Gu L, Park J-H, Duong K H, Ruoslahti E, Sailor M J (2010) Magnetic luminescent porous silicon microparticles for localized delivery of molecular drug payloads. Small 6:2546–2552

    Article  CAS  Google Scholar 

  17. Tzur-Balter A, Rubinski A, Segal E (2013) Designing porous silicon-based microparticles as carriers for controlled delivery of mitoxantrone dihydrochloride. J Mater Res 28:231–239

    Article  CAS  Google Scholar 

  18. Wang M, Coffer JL, Dorraj K, Hartman PS, Loni A, Canham LT (2010) Sustained antibacterial activity from triclosan-loaded nanostructured mesoporous silicon. Mol Pharm 7:2232–2239

    Article  CAS  Google Scholar 

  19. Tang L, Saharay A, Fleischer W, Hartman P, Loni A, Canham LT, Coffer JL (2013) Sustained antifungal activity from a ketoconazole-loaded nanostructured mesoporous silicon platform. Silicon 5:213–217

    Article  CAS  Google Scholar 

  20. Salonen J, Laitinen L, Kaukonen AM, Tuuraa J, Björkqvista M, Heikkiläa T, Vähä-Heikkiläa K, Hirvonen J, Lehto V-P (2005) Mesoporous silicon microparticles for oral drug delivery: loading and release of five model drugs. J Control Release 108:362– 374

    Article  CAS  Google Scholar 

  21. Gu L, Ruff LE, Qin Z, Corr M, Hedrick SM, Sailor MJ (2012) Multivalent porous silicon nanoparticles enhance the immune activation potency of agonistic CD40 antibody. Adv Mater 24:3981–3987

    Article  CAS  Google Scholar 

  22. Kilpeläinen M, Riikonen J, Vlasova MA, Huotari A, Lehto V-P, Salonen J, Herzig K H, Järvinen K. (2009) In vivo delivery of a peptide, ghrelin antagonist, with mesoporous silicon microparticles. J Control Release 137:166–170

    Article  Google Scholar 

  23. Sailor M (2012) Porous silicon in practice. Wiley-VCH, Weinheim, pp 48–51

    Google Scholar 

  24. Loni A, Barwick D, Batchelor L, Tunbridge J, Han Y, Li Z, Canham LT (2011). Electrochem Solid-State Lett 14:K25–K27

    Article  CAS  Google Scholar 

  25. Cullis AG, Canham LT (1991) Visible light emission due to quantum size effects in highly porous crystalline silicon. Nature 353:335–338

    Article  CAS  Google Scholar 

  26. Canham LT, Cullis AG, Pickering C, Dosser OD, Cox TI, Lynch TP (1994) Luminescent silicon aerocrystal networks prepared by anodisation and supercritical drying. Nature 368:133– 135

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffery L. Coffer.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 1.19 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Hartman, P.S., Loni, A. et al. Stain Etched Nanostructured Porous Silicon: The Role of Morphology on Antibacterial Drug Loading and Release. Silicon 8, 525–531 (2016). https://doi.org/10.1007/s12633-015-9397-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-015-9397-1

Keywords

Navigation