Skip to main content
Log in

Simulating the Role of TCO Materials, their Surface Texturing and Band Gap of Amorphous Silicon Layers on the Efficiency of Amorphous Silicon Thin Film Solar Cells

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

In this work, through modeling we propose how the choice of the TCO material, its texturing and optimization of band gap of a-Si:H layers help to increase the efficiency of a-Si:H solar cells. While selecting plane and textured indium tin oxide (ITO) and zinc oxide (ZnO) as TCOs, the solar cell parameters and performance are examined as a function of band gap of different a-Si:H layers. The optimum band gap values of 2.1 eV, 1.9 eV and 1.85 eV are obtained for p, i and n-layers of a-Si:H with maximum efficiencies of ~ 15.5 % and 17.7 % using plane ITO and ZnO contacts respectively. Interestingly, the conversion efficiency is further increased to ~ 16.3 % and 18.6 % when textured ITO and textured ZnO are used as TCOs. Moreover the higher efficiencies with ZnO-based contact than ITO-based contact can be explained due to slightly higher drift velocity of holes nearer to the junction and little improved optical properties which may also attributes to the enhanced trapping of the light. These results are very encouraging and may help in developing a-Si:H based solar cell technology for thin films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chopra KL, Paulson PD, Dutta V (2004) Thin-film solar cells: an overview. Prog inPhotovoltics: Res Appl 12:69–92

    Article  CAS  Google Scholar 

  2. Guha S (1998) Amorphous silicon alloy photovoltaic technology and applications. Renew Energy 15:189–194

    Article  CAS  Google Scholar 

  3. Street RA (1991). In: Cahn RW, Davis EA, Ward IM (eds) Hydrogenated Amorphous Silicon. Cambridge Solid State Science Series. Cambridge University Press

  4. Alpuim P, Samantilleke A, Marins E, Oliveira F, Cerqueira MF, Rebouta L, Stefanov S, Chiussi S, Serra C, Bourée JE (2010) Amorphous silicon thin-film solar cells deposited on flexible substrates using different zinc oxide layers. Phys Status Solidi C 7:1061–64

    CAS  Google Scholar 

  5. Kabir MI, Shahahmadi SA, Lim V, Zaidi S, Sopian K, Amin N (2012) Amorphous silicon single-junction thin-film solar cell exceeding 10 % efficiency by design optimization. Inter J Photoenergy:460919

  6. Kroll U, Bucher C, Benagli S, Schönbächler I, Meiera J, Shah A, Ballutaud J, Howling A, Hollenstein Ch, Büchel A, Poppeller M (2004) High-efficiency p-i-n a-Si:H solar cells with low boron cross-contamination prepared in a large-area single-chamber PECVD reactor. Thin Solid Films 451–452:525–530

    Article  Google Scholar 

  7. Green MA, Emery K, Hishikawa Y, Warta W, Dunlop ED (2014) Solar cell efficiency table (version 43). Prog InPhotovoltics: Res Appl 22:1–9

    Article  Google Scholar 

  8. Liao X, Du W, Yang X, Povolny H, Xiang X, Deng X, Sun K (2006) Nanostructure in the p-layer and its impacts on amorphous silicon solar cells. J Non-Cryst Solids 352:1841–1846

    Article  CAS  Google Scholar 

  9. Meier J, Kroll U, Vallat-Sauvain E, Spitznagel J, Graf U, Shah A (2004) Amorphous solar cells, the micromorph concept and the role of VHF-GD deposition technique. Sol Energy 77:983–993

    Article  CAS  Google Scholar 

  10. Wada T, Kondo M, Matsuda A (2002) Improvement of V oc using carbon added microcrystalline Si p-layer in microcrystalline Si solar cells. Sol Energy Mater Sol Cell 74:533–38

    Article  CAS  Google Scholar 

  11. Muller J, Rech B, Springer J, Vanecek M (2004) TCO and light trapping in silicon thin film solar cells. Sol Energy 77:917–930

    Article  Google Scholar 

  12. Baek S, Lee JC, Lee YJ, Iftiquar SM, Kim Y, Park J, Yi J (2012) Interface modification effect between p-type a-SiC:H and ZnO:Al p-i-n amorphous silicon solar cells. Nanoscale Res Lett 7:81

    Article  Google Scholar 

  13. Morkoc H, Ozgur U (2008) Zinc oxide: fundamentals, materials and device technology. WILEY-VCH Verlag GmbH & Co. kGaA

  14. Tan H, Sivec L, Yan B, Santbergen R, Zeman M, Smets AHM (2013) Improved light trapping in microcrystalline silicon solar cells by plasmonic back reflector with broad angular scattering and low parasitic absorption. Appl Phys Lett 102:153902

    Article  Google Scholar 

  15. Zeman M, Isabella O, Jäger K, Santbergen R, Solntsev S, Topic M, Krc J (2012) Advanced light management approaches for thin-film silicon solar cells. Energy Proc 15:189–199

    Article  Google Scholar 

  16. Berginski M, Hüpkes J, Reetz W, Rech B, Wuttig M (2008) Recent development on surface-textured ZnO:Al films prepared by sputtering for thin-film solar cell application. Thin Solid Films 516:5836–41

    Article  CAS  Google Scholar 

  17. Dwivedi N, Kumar S, Bisht A, Patel K, Sudhakar S (2013) Simulation approach for optimization of device structure and thickness of HIT solar cells to achieve ~ 27 % efficiency. Sol Energy 88:31–41

    Article  CAS  Google Scholar 

  18. Stangle R, Kriegel M, Schaffarzik D, Schmidt M (2005) AFORS-HET Version 2.1 a numerical computer program for simulation of (thin film) heterojunction solar cells. www.hmi.de/bereiche/SE/SE1/projects/aSicSi/AFORS-HET

  19. Dwivedi N, Kumar S, Singh S, Malik HK (2012) Oxygen modified diamond-like carbon as window layer for amorphous silicon solar cells. Sol Energy 86:220–230

    Article  CAS  Google Scholar 

  20. Dwivedi N, Kumar S, Malik HK (2012) Studies of pure and nitrogen-incorporated hydrogenated amorphous carbon thin films and their possible application for amorphous silicon solar cells. J Appl Phys 111:014908

    Article  Google Scholar 

  21. Sharma M, Kumar S, Dwivedi N, Juneja S, Gupta AK, Sudhakar S, Patel K (2013) Optimization of band gap, thickness and carrier concentrations for the development of efficient microcrystalline silicon solar cells: A theoretical approach. Sol Energy 97:176–185

    Article  CAS  Google Scholar 

  22. Dao VA, Heo J, Choi H, Kim Y, Park S, Jung S, Lakshminarayan N, Yi J (2010) Simulation and study of the influence of the buffer intrinsic layer, back surface field, densities of interface defects, resistivity of p-type silicon substrate and transparent conductive oxide on heterojunction with intrinsic thin-layer (HIT) solar cell. Sol Energy 84:777–83

    Article  CAS  Google Scholar 

  23. Zhao L, Zhou CL, Li HL, Diao HW, Wang WJ (2008) Design optimization of bifacial HIT solar cells on p-type silicon substrates by simulation. Sol Energy Mater Sol Cell 92:673–81

    Article  CAS  Google Scholar 

  24. Zhao L, Li H L, Zhou CL, Diao HW, Wang WJ (2009) Optimized resistivity of p-type Si substrate for HIT solar cell with Al back surface field by computer simulation. Sol Energy 83:812–16

    Article  CAS  Google Scholar 

  25. Singh S, Kumar S, Dwivedi N (2012) Band gap optimization of p–i–n-layers of a-Si:H by computer aided simulation for development of efficient cell. Sol Energy 86:1470–1476

    Article  CAS  Google Scholar 

  26. Van Sark WG, Korte L, Roca F (2012) Physics and technology of amorphous-crystalline heterostructure silicon solar cells. Springer-Verlag Berl, Heidelberg

    Book  Google Scholar 

  27. Pokatilov EP, Nika DL, Balandin AA (2006) Built-in field effect on the electron mobility in AlN / GaN / AlN quantum wells. Appl phys lett 89:113508

    Article  Google Scholar 

  28. Schiff EA (2003) Low-mobility solar cells: a device physics primer with application to amorphous silicon. Sol Energy Mater Sol Cells 78:567–595

    Article  CAS  Google Scholar 

  29. Ginley DS, Perkins JD (2010) Transparent conductors. In: Handbook of transparent conductors. Springer, US

  30. Hongsingthong A, Krajangsang T, Yunaz IA, Miyajima S, Konagai M (2010) ZnO films with very high haze value for use as front transparent conductive oxide films in thin film silicon solar cells. Japan J Appl Phys 3:051102

    Google Scholar 

  31. Alkaya A, Kaplan R, Canbolat H, Hegedus SS (2009) A comparison of fill factor and recombination losses in amorphous silicon solar cells on ZnO and SnO 2. Renew Energy 34:1595–99

    Article  CAS  Google Scholar 

  32. Major S, Kumar S, Bhatnagar M, Chopra KL (1986) Effect of hydrogen plasma treatment on transparent conducting oxides. Appl Phys Lett 49:394

    Article  CAS  Google Scholar 

  33. Gordon RG (1996) Preparation and properties of transparent conductors. Mater Res Soc Symp Proc 426:419–429

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sushil Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, M., Chaudhary, D., Dwivedi, N. et al. Simulating the Role of TCO Materials, their Surface Texturing and Band Gap of Amorphous Silicon Layers on the Efficiency of Amorphous Silicon Thin Film Solar Cells. Silicon 9, 59–68 (2017). https://doi.org/10.1007/s12633-015-9331-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-015-9331-6

Keywords

Navigation