Skip to main content
Log in

A Kinetic Analysis of the Thermo-Oxidative Degradation of PU/POSS nanohybrid Elastomers

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

A series of polyurethane/polyhedral oligomeric silsesquioxane (PU/POSS) nanohybrid elastomers, synthesized from diphenylmethane-4,4’-diisocyanate (MDI), po- lyoxytetramethylenediol (PTMG), 1,4-butanediol (BD) and 1-(1-(2,3-dihydroxypropoxy)butyl)-3,5,7,9,11,15-isobutyl- pentacyclo-[9.5.1.13,9.15,15.17,13]-octasiloxane(PHIPOSS), have been submitted to thermal stability investigations under an oxidizing atmosphere. The polymers were prepared with differing amounts of silsesquioxane units in their hard segments (0, 4 and 10 wt. %). It was observed that POSS influenced the thermal stability of PU/POSS nanohybrid systems both in the first and second stage of the degradation process. Ozawa–Flynn–Wall and Friedman Kinetic analyses revealed that the activation energy (Ea) and pre-exponential factor (A) increased in the first stage and decreased in the second stage of the thermal degradation as a result of PHIPOSS introduction into PU elastomers. The best approximation of the f(α) function was found for the reaction of nth order with autocatalysis/n-dimensional nucleation model in case of neat PU and reaction of nth order with autocatalysis/reaction nth order model for the nanohybrid elastomers

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Phillips SH, Haddad TS, Tomczak SJ (2004) Curr Opin Solid State Mat Sci 8:21–29

    Article  CAS  Google Scholar 

  2. Kannan RY, Salacinski HJ, Butler PE, Seifalian AM (2005) Acc Chem Res 38:879–884

    Article  CAS  Google Scholar 

  3. Kickelbick G (2007) Hybrid materials–synthesis, characterization and applications. Wiley-VCH Verlag, Weinheim

    Google Scholar 

  4. Wei Q, Ji J, Shen J (2008) Macromol Rapid Commun 29:645–650

    Article  CAS  Google Scholar 

  5. Cardiano P (2008) J Appl Polym Sci 108:3380–3387

    Article  CAS  Google Scholar 

  6. Araki W, Wada S, Adachi T (2008) J Appl Polym Sci 108:2421–2427

    Article  CAS  Google Scholar 

  7. Ahmad S, Agnihotry SA, Ahmad S (2008) J Appl Polym Sci 107:3042–3048

    Article  CAS  Google Scholar 

  8. Lipatov YS (1995) Polymer reinforcement. ChemTec Publishing, Toronto

    Google Scholar 

  9. Klempner D., Sperling LH, Utracki LA (1994) Interpenetrating polymer networks. American Chemical Society, Washington

    Book  Google Scholar 

  10. Zhou P, Frisch H L, Rogovina L, Makarova L, Zhdanov A, Sergeienko N (1993) J Polym Sci Polym Chem 31:2481–2491

    Article  CAS  Google Scholar 

  11. Madbouly SA, Otaigbe JU (2009) Prog Polym Sci 34:1283–1332

    Article  CAS  Google Scholar 

  12. Daimatsu K, Anno Y, Sugimoto H, Nakanishi E, Katsuhiro I, Tomoki I, Kazuki Y (2008) J Appl Polym Sci 108:362–369

    Article  CAS  Google Scholar 

  13. Yang P (2003) Chemistry of nanostructured materials. World Scientific Publishing, Hong Kong

    Book  Google Scholar 

  14. Li J, Wong P-S, Kim J-K (2008) Mater Sci Eng A 483–484:660–663

    Article  CAS  Google Scholar 

  15. Lin J-C (2008) Comp Struct 84:125–131

    Article  Google Scholar 

  16. Zhao X, Mai Z, Kang X, Dai Z, Zou X (2008) Electrochim Acta 53:4732–4739

    Article  CAS  Google Scholar 

  17. Zhang J, Luo S, Gui L (1997) J Mater Sci 32:1469–1472

    Article  CAS  Google Scholar 

  18. Catauro M, Raucci MG, de Gaetano F, Marotta A (2003) J Mater Sci 38:3097–3102

    Article  CAS  Google Scholar 

  19. Rościszewski P, Kazimierczuk R, Sołtysiak J (2006) Polimery 51:3–11

    Google Scholar 

  20. Asuncion MZ, Laine RM (2007) Macromolecules 40:555–562

    Article  CAS  Google Scholar 

  21. Harrison PG (1997) J Organometal Chem 542:141–183

    Article  CAS  Google Scholar 

  22. Leśniak E (2001) Polimery 46:516

    Google Scholar 

  23. Leśniak E (2001) Polimery 46:582

    Google Scholar 

  24. Pielichowski K, Njuguna J, Janowski B, Pielichowski J (2006) Adv Polym Sci 201:225–296

    Article  CAS  Google Scholar 

  25. Janowski B, Pielichowski K (2008) Polimery 53:87–98

    CAS  Google Scholar 

  26. Madbouly SA, Otaigbe JU, Nanda AK, Wicks DA (2007) Macromolecules 40:4982–4991

    Article  CAS  Google Scholar 

  27. Kim C-K, Kim B-S, Sheikh F A, Lee U-S, Khil M-S, Kim H-Y (2007) Macromolecules 40:4823–4828

    Article  CAS  Google Scholar 

  28. Bian Y, Pejanovic S, Kenny J, Mijovic J (2007) Macromolecules 40:6239–6248

    Article  CAS  Google Scholar 

  29. Zhou Z, Yin N, Zhang Y, Zhang Y (2008) J Appl Polym Sci 107:825–830

    Article  CAS  Google Scholar 

  30. Kim JK, Yoon KH, Bang DS, Park Y-B, Kim H-U, Bang Y-H (2008) J Appl Polym Sci 107:272–279

    Article  CAS  Google Scholar 

  31. Balasubramani G, Pudupadi S, Muthusamy S (2012) Polymer Int 61:1344–1352

    Article  CAS  Google Scholar 

  32. Chen G-X, Si L, Lu P, Li Q (2012) J Appl Polym Sci 125:3929–3935

    Article  CAS  Google Scholar 

  33. Yong Q, Ping W, Xiaomin Z, Pingkai J, Haizhou Y (2013) Fire Mater 37:1–16

    Article  CAS  Google Scholar 

  34. Mirchandani G, Waghoo G, Parmar R, Haseebuddin S, Ghosh SK (2009) Prog Org Coat 65:444–449

    Article  CAS  Google Scholar 

  35. Fu Z, Xu K, Liu X, Wu J, Tan C, Chen M (2013) Macromol Chem Phys 214:1122–1130

    Article  CAS  Google Scholar 

  36. Ramirez C, Rico M, Barral L, Diez J, Garcia-Garabal S, Montero B (2007) J Therm Anal Cal 87:69–72

    Article  CAS  Google Scholar 

  37. Król B, Król P (2010) Polimery 55:855–862

    Google Scholar 

  38. Spoljaric S, Shanks RA (2012) Express Polym Lett 6:354–372

    Article  CAS  Google Scholar 

  39. Pielichowski K, Kulesza K, Pearce EM (2003) J Appl Polym Sci 88:2319–2330

    Article  CAS  Google Scholar 

  40. Opfermann J, Kaisersberger E (1992) Thermochim Acta 203:167–173

    Article  CAS  Google Scholar 

  41. Doyle CD (1962) J Appl Polym Sci 6:639–642

    Article  CAS  Google Scholar 

  42. Ozawa T (1965) Bull Chem Soc Jpn 38:1881–1886

    Article  CAS  Google Scholar 

  43. Flynn JH, Wall LA (1966) Polym Lett 4:323–328

    Article  CAS  Google Scholar 

  44. Friedman HL (1964) J Polym Sci Part C 6:183–195

    Article  Google Scholar 

  45. Pielichowski K, Flejtuch K (2005) J Anal Appl Pyrolysis 73:131–138

    Article  CAS  Google Scholar 

  46. Król P, Pielichowska K, Byczynski L (2010) Thermochim Acta 91:507–508

    Google Scholar 

  47. Janowski B, Pielichowski K (2008) Thermochim Acta 478:51– 53

    Article  CAS  Google Scholar 

  48. Lewicki JP, Pielichowski K, Tremblot De La Croix P, Janowski B, Todd D, Liggat JJ (2010) Polym Deg Stab 95:1099–1105

    Article  CAS  Google Scholar 

  49. Janowski B, Pielichowski K (2012) Polimery 57:518–528

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bartłomiej Janowski.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Janowski, B., Pielichowski, K. A Kinetic Analysis of the Thermo-Oxidative Degradation of PU/POSS nanohybrid Elastomers. Silicon 8, 65–74 (2016). https://doi.org/10.1007/s12633-014-9192-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-014-9192-4

Keywords

Navigation