Skip to main content
Log in

Autologe Fettgewebstransplantation

Neueste Erkenntnisse und klinische Relevanz

Autologous adipose tissue transplantation

Latest knowledge and clinical relevance

  • Übersichten
  • Published:
Journal für Ästhetische Chirurgie Aims and scope

Zusammenfassung

Hintergrund

Das Verfahren des autologen Fetttransfers wurde 1893 erstmals durch den deutschen Chirurgen Gustav Neuber beschrieben. Heutzutage gilt der US-Amerikaner Sydney Coleman als Wiederentdecker der Fettgewebstransplantation, da er diese Methode maßgeblich mit seinem dazu ausgearbeiteten Protokoll prägte. Das Fettgewebe ist wegen seiner volumetrischen und regenerativen Eigenschaften ein anerkannter autologer Filler in der regenerativen plastischen Chirurgie und erfreut sich zunehmender Beliebtheit.

Fragestellung

Neueste Entwicklungen in der autologen Fettgewebstransplantation und deren klinische Anwendung werden zusammengefasst.

Material und Methode

Es wird eine kurze Übersicht über die Bestandteile des Fetttransplantats präsentiert. Im Hauptteil werden die aktuellen Entwicklungen des autologen Fetttransfers dargestellt. Dazu wurden aktuelle Studien analysiert.

Ergebnisse

Fett ist ein dynamisches Gewebe, das eine Vielzahl verschiedener Zellen enthält. Hierbei spielen insbesondere die enthaltenen Stammzellen, die „adipose-derived stem cells“ (ASC), eine wichtige Rolle. Zudem werden im Fettgewebe Wachstumsfaktoren produziert, wodurch v. a. die Angiogenese gesichert wird. Im Laufe der Zeit wurde das von Coleman entwickelte Protokoll mehrfach modifiziert, und verschiedenste Techniken zur Verbesserung der Fetttransplantation wurden entwickelt.

Schlussfolgerung

Der autologe Fetttransfer hat in der regenerativen, plastischen Chirurgie zunehmend an Bedeutung gewonnen. Aktuell besteht noch kein Konsens zur optimalen Vorgehensweise hinsichtlich des Liposuktions‑, Prozessierungs- und Injektionsverfahren, was jedoch durch kontinuierliche Forschung verbessert wird.

Abstract

Background

The method of autologous fat transfer was first described in 1893 by the German surgeon Gustav Neuber. This technique has been decisively influenced by the American plastic surgeon Sydney Coleman who developed a standardized protocol. Fat tissue is an appreciated autologous filler in regenerative plastic surgery due to its volumetric and regenerative properties.

Objective

Recent developments in autologous fat graft and their clinical applications are summarized.

Methods

A brief overview of the components of fat grafting as well as the latest development in autologous fat transfers are provided based on the analysis of recent studies.

Results

Adipose tissue is a dynamic organ and includes a multitude of different cells of which the adipose tissue stem cells, so-called adipose-derived stem cells (ASC), play an important role. Growth factors are produced and secreted by adipose tissue inducing proliferation, differentiation, and angiogenesis. Over time the protocol developed by Coleman has been modified several times and various techniques for improving fat transplantation procedures have been developed.

Conclusion

The autologous fat transfer has gained importance in regenerative plastic surgery. Currently, there is no consensus on the optimal approach in terms of liposuction, processing and injection procedures, which require further research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5

Literatur

  1. Alharbi Z, Opländer C, Almakadi S et al (2013) Conventional vs. micro-fat harvesting: how fat harvesting technique affects tissue-engineering approaches using adipose tissue-derived stem/stromal cells. J Plast Reconstr Aesthet Surg 66:1271–1278

    Article  PubMed  Google Scholar 

  2. Allen RJ Jr, Canizares O Jr, Scharf C et al (2013) Grading lipoaspirate: is there an optimal density for fat grafting? Plast Reconstr Surg 131:38–45

    Article  CAS  PubMed  Google Scholar 

  3. Aronowitz JA, Ellenhorn JD (2013) Adipose stromal vascular fraction isolation: a head-to-head comparison of four commercial cell separation systems. Plast Reconstr Surg 132:932e–939e

    Article  CAS  PubMed  Google Scholar 

  4. Botti G, Pascali M, Botti C et al (2011) A clinical trial in facial fat grafting: filtered and washed versus centrifuged fat. Plast Reconstr Surg 127:2464–2473

    Article  CAS  PubMed  Google Scholar 

  5. Cervelli V, Gentile P, Scioli MG et al (2009) Application of platelet-rich plasma in plastic surgery: clinical and in vitro evaluation. Tissue Eng Part C Methods 15:625–634

    Article  CAS  PubMed  Google Scholar 

  6. Coleman SR (1997) Facial recontouring with lipostructure. Clin Plast Surg 24:347–367

    CAS  PubMed  Google Scholar 

  7. Condé-Green A, Baptista LS, de Amorin NF et al (2010a) Effects of centrifugation on cell composition and viability of aspirated adipose tissue processed for transplantation. Aesthet Surg J 30:249–255

    Article  PubMed  Google Scholar 

  8. Condé-Green A, de Amorim NF, Pitanguy I (2010b) Influence of decantation, washing and centrifugation on adipocyte and mesenchymal stem cell content of aspirated adipose tissue: a comparative study. J Plast Reconstr Aesthet Surg 63:1375–1381

    Article  PubMed  Google Scholar 

  9. Chung MT, Paik KJ, Atashroo DA et al (2014) Studies in fat grafting: Part I. Effects of injection technique on in vitro fat viability and in vivo volume retention. Plast Reconstr Surg 134:29–38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ferraro GA, De Francesco F, Tirino V et al (2011) Effects of a new centrifugation method on adipose cell viability for autologous fat grafting. Aesthetic Plast Surg 35:341–348

    Article  PubMed  Google Scholar 

  11. Gentile P, Orlandi A, Scioli MG et al (2012) A comparative translational study: the combined use of enhanced stromal vascular fraction and platelet-rich plasma improves fat grafting maintenance in breast reconstruction. Stem Cells Transl Med 1:341–351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Girard AC, Atlan M, Bencharif K et al (2014) New insights into lidocaine and adrenaline effects on human adipose stem cells. Aesthetic Plast Surg 37:144–152

    Article  Google Scholar 

  13. Gugerell A, Kober J, Schmid M et al (2014) Botulinum toxin A and lidocaine have an impact on adipose-derived stem cells, fibroblasts, and mature adipocytes in vitro. J Plast Reconstr Aesthet Surg 67:1276–1281

    Article  CAS  PubMed  Google Scholar 

  14. Kato H, Mineda K, Eto H et al (2014) Degeneration, regeneration, and cicatrization after fat grafting: dynamic total tissue remodeling during the first 3 months. Plast Reconstr Surg 133:303e–313e

    CAS  PubMed  Google Scholar 

  15. Khouri RK, Rigotti G, Cardoso E et al (2014) Megavolume autologous fat transfer: part II. Practice and techniques. Plast Reconstr Surg 133:1369–1377

    Article  CAS  PubMed  Google Scholar 

  16. Li F, Guo W, Li K et al (2015) Improved fat graft survival by different volume fractions of platelet-rich plasma and adipose-derived stem cells. Aesthet Surg J 35:319–333

    Article  CAS  PubMed  Google Scholar 

  17. Livaoğlu M, Buruk CK, Uraloğlu M et al (2012) Effects of lidocaine plus epinephrine and prilocaine on autologous fat graft survival. J Craniofac Surg 23:1015–1018

    Article  PubMed  Google Scholar 

  18. Mojallal A, Lequeux C, Shipkov C et al (2009) Improvement of skin quality after fat grafting: clinical observation and an animal study. Plast Reconstr Surg 124:765–774

    Article  CAS  PubMed  Google Scholar 

  19. Neuber G (1893) Fetttransplantation. Verh Dtsch Ges Chir 22:66

    Google Scholar 

  20. Nguyen PS, Desouches C, Gay AM et al (2012) Development of micro-injection as an innovative autologous fat graft technique: the use of adipose tissue as dermal filler. J Plast Reconstr Aesthet Surg 65:1692–1699

    Article  CAS  PubMed  Google Scholar 

  21. Pallua N, Baroncini A, Alharbi Z, Stromps JP (2014) Improvement of facial scar appearance and microcirculation by autologous lipofilling. J Plast Reconstr Aesthet Surg 67:1033–1037

    Article  CAS  PubMed  Google Scholar 

  22. Pallua N, Pulsfort AK, Suschek C, Wolter TP (2009) Content of the growth factors bFGF, IGF-1, VEGF, and PDGF-BB in freshly harvested lipoaspirate after centrifugation and incubation. Plast Reconstr Surg 123:826–833

    Article  CAS  PubMed  Google Scholar 

  23. Pallua N, Serin M, Wolter TP (2014) Characterisation of angiogenetic growth factor production in adipose tissue-derived mesenchymal cells. J Plast Surg Hand Surg 48:412–416

    Article  PubMed  Google Scholar 

  24. Pallua N, Wolter TP (2013) The lipo-facelift: merging the face-lift and liposculpture: eight years experience and a preliminary observational study. Aesthetic Plast Surg 37:1107–1113

    Article  CAS  PubMed  Google Scholar 

  25. Paul NE, Denecke B, Kim BS et al (2017) The effect of mechanical stress on the proliferation, adipogenic differentiation and gene expression of human adipose-derived stem cells. J Tissue Eng Regen Med:10. https://doi.org/10.1002/term.2411

    Google Scholar 

  26. Pulsfort AK, Wolter TP, Pallua N (2011) The effect of centrifugal forces on viability of adipocytes in centrifuged lipoaspirates. Ann Plast Surg 66:292–295

    Article  CAS  PubMed  Google Scholar 

  27. Ramon Y, Shoshani O, Peled IJ et al (2005) Enhancing the take of injected adipose tissue by a simple method for concentrating fat cells. Plast Reconstr Surg 115:197–201

    CAS  PubMed  Google Scholar 

  28. Shoshani O, Berger J, Fodor L et al (2005) The effect of lidocaine and adrenaline on the viability of injected adipose tissue—an experimental study in nude mice. J Drugs Dermatol 4:311–316

    PubMed  Google Scholar 

  29. Tonnard P, Verpaele A, Peeters G et al (2013) Nanofat grafting: basic research and clinical applications. Plast Reconstr Surg 132:1017–1026

    Article  CAS  PubMed  Google Scholar 

  30. Amar RE, Fox DM (2011) The facial autologous muscular injection (FAMI) procedure: an anatomically targeted deep multiplane autologous fat-grafting technique using principles of facial fat injection. Aesthetic Plast Surg 35:502–510

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Pallua.

Ethics declarations

Interessenkonflikt

N. Pallua, B.S. Kim und B. Schäfer geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren. Alle Patienten, die über Bildmaterial oder anderweitige Angaben innerhalb des Manuskripts zu identifizieren sind, haben hierzu ihre schriftliche Einwilligung gegeben.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pallua, N., Kim, B.S. & Schäfer, B. Autologe Fettgewebstransplantation. J Ästhet Chir 11, 13–18 (2018). https://doi.org/10.1007/s12631-018-0117-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12631-018-0117-8

Schlüsselwörter

Keywords

Navigation