Skip to main content
Log in

Factors influencing serum 25-hydroxivitamin D levels and other bone metabolism parameters in healthy older women

  • Published:
The journal of nutrition, health & aging

Abstract

Objective

Older women have frequently low serum 25-hydroxivitamin D (25[OH]D) concentrations, high parathormone (PTH) levels and low bone mineral density (BMD) values. Endogenous synthesis, dietary habits, sunlight exposure and fat-mass-mediated storage may influence 25(OH)D levels and bone metabolism, but the relevance of these factors in the elderly has yet to be fully elucidated. We aimed to investigate the influence of dietary vitamin D intake and fat mass on serum 25(OH)D levels and bone metabolism in older women.

Design

Cross-sectional.

Setting

Community.

Participants

218 fit older women attending a biweekly mild fitness program.

Measurements

Dietary habits was investigated through a 3-day record questionnaire. Serum 25(OH)D and intact parathormone (PTH) concentrations were measured by radioimmunoassay and by a 2-step immunoradiometric assay, respectively. BMD and body composition were estimated using dualenergy X-ray absorptiometry with fan-beam technology.

Results

Only fat mass showed a significant negative association with 25(OH)D (β=-3.76, p<0.001), and positive associations with whole body, lumbar, femoral neck and total hip BMD. Binary logistic analysis revealed a protective effect of adiposity on secondary hyperparathyroidism (OR=0.42, 95%CI:0.19-0.92, p=0.03). Dietary vitamin D intake was not associated to any of these outcomes.

Conclusion

Fat mass has a greater influence on serum 25(OH)D than dietary vitamin D intake.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table 1
Table 2
Figure 1

Similar content being viewed by others

References

  1. Jungert A, Neuhäuser-Berthold M. Sex-specific determinants of serum 25-hydroxyvitamin D3 concentrations in an elderly German cohort: a cross-sectional study. Nutrition & Metabolism 2015;12:2.

    Article  Google Scholar 

  2. Bailey RL, Dodd KW, Goldman JA, Gahche JJ, Dwyer JT, Moshfegh AJ et al. Estimation of total usual calcium and vitamin D intakes in the United States. J Nutr 2010;140:817–822.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. LARN. http://www.sinu.it/html/pag/larn-2014.asp. Accessed 01 September 2015

  4. Wortsman J, Matsuoka LY, Chen TC, Lu Z, Holick MF. Decreased bioavailability of vitamin D in obesity. Am J Clin Nutr 2000;72:690–3.

    CAS  PubMed  Google Scholar 

  5. Li J, Byrne ME, Chang E, Jiang Y, Donkin SS, Buhman KK, Burgess JR, Teegarden D. 1alpha, 25-dihydroxyvitamin D hydroxylase in adipocytes. J Steroid Biochem Mol Biol 2008;112(1–3):122–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Pabst G, Zimmermann AK, Huth C, Koenig W, Ludwig T, Zierer A, Peters A, Thorand B. Association of low 25-hydroxyvitamin D levels with the frailty syndrome in an aged population: results from the KORA-age Augsburg study. J Nutr Health Aging 2015;19(3):258–64.

    Article  CAS  PubMed  Google Scholar 

  7. Yin Y, Fan Y, Lin F, Xu Y, Zhang J. Nutrient biomarkers and vascular risk factors in subtypes of mild cognitive impairment: a cross-sectional study. J Nutr Health Aging 2015;19(1):39–47.

    Article  CAS  PubMed  Google Scholar 

  8. Toffanello ED, Coin A, Perissinotto E, Zambon S, Sarti S, Veronese N, De Rui M, Bolzetta F, Corti MC, Crepaldi G, Manzato E, Sergi G. Vitamin D deficiency predicts cognitive decline in older men and women: The Pro.V.A. Study. Neurology 9;83(24):2292–8.

  9. 2014;Dobnig H, Pilz S, Scharnagl H, Renner W, Seelhorst U, Wellnitz B, Kinkeldei J, Boehm BO, Weihrauch G, Maerz W. Independent association of low serum 25-hydroxyvitamin d and 1,25-dihydroxyvitamin d levels with all-cause and cardiovascular mortality. Arch Intern Med 2008;23;168(12):1340–9.

    Article  Google Scholar 

  10. Coin A, Sergi G, Minicuci N, Giannini S, Barbiero E, Manzato E et al. Fat-free mass and fat mass reference values by dual-energy X-ray absorptiometry (DEXA) in a 20-80 year-old Italian population. Clin Nutr 2008;27:87–94.

    Article  PubMed  Google Scholar 

  11. Macdonald HM, Mavroeidi A, Fraser WD, Darling AL, Black AJ, Aucott L, O’Neill F, Hart K, Berry JL, Lanham-New SA, Reid DM. Sunlight and dietary contributions to the seasonal vitamin D status of cohorts of healthy postmenopausal women living at northerly latitudes: a major cause for concern? Osteoporos Int 2011;22:2461–72.

    Article  CAS  PubMed  Google Scholar 

  12. Pasco JA, Henry MJ, Nicholson GC, Sanders KM, Kotowicz MA. Vitamin D status of women in the Geelong Osteoporosis Study: association with diet and casual exposure to sunlight. Med J Aust 2001;15;175(8):401–5.

    CAS  PubMed  Google Scholar 

  13. Veronese N, Berton L, Carraro S, Bolzetta F, De Rui M, Perissinotto E et al. Effect of oral magnesium supplementation on physical performance in healthy elderly women involved in a weekly exercise program: a randomized controlled trial. Am J Clin Nutr, 2014;100(3):974–81.

    Article  CAS  PubMed  Google Scholar 

  14. Institute of Medicine, Food and Nutrition Board. Dietary Reference Intakes for Calcium and Vitamin D. Washington, DC: National Academy Press, 2010.

    Google Scholar 

  15. Reid IR, Bolland MJ, Grey A. Effects of vitamin D supplements on bone mineral density: a systematic review and meta-analysis. Lancet 2014;11;383:146–55.

    Article  Google Scholar 

  16. Andersen R, Mølgaard C, Skovgaard LT, Brot C, Cashman KD, Jakobsen J, Lamberg-Allardt C, Ovesen L. Effect of vitamin D supplementation on bone and vitamin D status among Pakistani immigrants in Denmark: a randomised doubleblinded placebo-controlled intervention study. Br J Nutr 2008;100(1):197–207.

    Article  CAS  PubMed  Google Scholar 

  17. Bikle DD. Vitamin D and bone. Curr Osteoporos Rep 2012;10(2):151–9.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Parikh SJ, Edelman M, Uwaifo GI, Freedman RJ, Semega-Janneh M, Reynolds J. Yanovski JA. The relationship between obesity and serum 1,25-dihydroxy vitamin D concentrations in healthy adults. J Clin Endocrinol Metab 2004;89(3):1196–9.

    Article  CAS  PubMed  Google Scholar 

  19. Arunabh S, Pollack S, Yeh J, Aloia JF. Body fat content and 25-hydroxyvitamin D levels in healthy women. J Clin Endocrinol Metab. 2003;88(1):157–61.

    Article  CAS  PubMed  Google Scholar 

  20. Wortsman J, Matsuoka LY, Chen TC, Lu Z, Holick MF. Decreased bioavailability of vitamin D in obesity. Am J Clin Nutr 2000;72(3):690–3.

    CAS  PubMed  Google Scholar 

  21. Han SS, Kim M, Lee SM, Lee JP, Kim S, Joo KW, Lim CS, Kim YS, Kim DK. Association between body fat and vitamin D status in Korean adults. Asia Pac J Clin Nutr 2014;23(1):65–75.

    PubMed  Google Scholar 

  22. Rosenstreich SJ, Rich C, Volwiler W. Deposition in and release of vitamin D3 from body fat: evidence for a storage site in the rat. J Clin Invest 1971;50(3):679–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Reid IR. Fat and bone. Arch Biochem Biophys 2010;503:20–7.

    Article  CAS  PubMed  Google Scholar 

  24. Reid IR, Evans MC, Cooper GJ, Ames RW, Stapleton J. Circulating insulin levels are related to bone density in normal postmenopausal women. Am J Physiol Endocrinol Metab 1993;265:E655–E659.

    CAS  Google Scholar 

  25. Luo XH, Guo LJ, Yuan LQ, Xie H, Zhou HD, Wu XP, Liao EY. Adiponectin stimulates human osteoblasts proliferation and differentiation via the MAPK signaling pathway. Exp Cell Res 2005;10;309(1):99–109.

    Article  Google Scholar 

  26. Belanger C, Luu-The V, Dupont P, Tchernof A. Adipose tissue intracrinology: potential importance of local androgen/estrogen metabolism in the regulation of adiposity. Horm Metab Res 2002;34:737–745.

    Article  CAS  PubMed  Google Scholar 

  27. Thomas T, Burguera B, Melton III LJ, Atkinson EJ, O’Fallon WM, Riggs BL, Khosla S. Role of serum leptin, insulin, and estrogen levels as potential mediators of the relationship between fat mass and bone mineral density in men versus women. Bone 2001;29:114–120.

    Article  CAS  PubMed  Google Scholar 

  28. Kontogianni MD, Dafni UG, Routsias JG, Skopouli FN. Blood leptin and adiponectin as possible mediators of the relation between fat mass and BMD in perimenopausal women. J Bone Miner Res 2004;19(4):546–51.

    Article  CAS  PubMed  Google Scholar 

  29. Goulding A, Taylor RW. Plasma leptin values in relation to bone mass and density and to dynamic biochemical markers of bone resorption and formation in postmenopausal women. Calc Tiss Int 1998;63:456–458.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicola Veronese.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trevisan, C., Veronese, N., Berton, L. et al. Factors influencing serum 25-hydroxivitamin D levels and other bone metabolism parameters in healthy older women. J Nutr Health Aging 21, 131–135 (2017). https://doi.org/10.1007/s12603-016-0746-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12603-016-0746-6

Key words

Navigation