Skip to main content
Log in

Comparative efficacy of phenoxy derivative JHAs Pyriproxyfen and Diofenolan against polyphagous pest Spodoptera litura (Fabricius) (Noctuidae: Lepidoptera)

  • Published:
Phytoparasitica Aims and scope Submit manuscript

Abstract

Novel phenoxy derivative Juvenile Hormone Analogs (JHAs) – pyriproxyfen and diofenolan were used to evaluate their efficacy against last instar larvae of polyphagous pest Spodoptera litura. Sixth instar day 1-3 old larvae were treated with different doses of pyriproxyfen and diofenolan. The JHAs disrupted the growth, development, molting and metamorphosis in S. litura treated larvae. Both the JHAs-pyriproxyfen and diofenolan were found to be equally potent in their effects. The larval duration was prolonged apart from inducing several malformations. They effectively controlled the polyphagous pest S. litura by inducing mortality, ecdysial failure, production of larval – pupal mosaics, reduced pupation, production of abnormal pupae, complete suppression of normal adult emergence and production of deformed non-viable adultoids. Being stable, posing minimal threat to non-target organisms including fish and birds, beneficial insects and safe to environment and humans, both these JHAs can be judicially incorporated into IPM programs along with other bio-rational methods for the successful control of polyphagous pest S. litura.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Similar content being viewed by others

References

  • Aribi, N., Smagghe, G., Lakbar, S., Soltani-Mazouni, N., & Soltani, N. (2006). Effects of pyriproxyfen, a juvenile hormone analog, on development of the mealworm, Tenebrio molitor. Pesticide Biochemistry and Physiology, 84, 55–62.

    Article  CAS  Google Scholar 

  • Arthur, F. H., Liu, S., Zhao, B., & Phillip, T. W. (2009). Residual efficacy of pyriproxyfen and hydroprene applied to wool, metal and concrete for control of stored product insect. Pest Management Science, 65, 791–797.

    Article  CAS  PubMed  Google Scholar 

  • Boina, D. R., Rogers, M. E., Wang, N., & Stelinski, L. L. (2009). Effect of pyriproxyfen, a juvenile hormone mimic, on egg hatch, nymph development, adult emergence and reproduction of the Asian citrus psyllid, Diaphorina citri Kuwayama. Pest Management Science, 66, 349–357.

    Article  Google Scholar 

  • Braga, I. A., Mello, C. B., Peixoto, A. A., & Valle, D. (2005). Evaluation of Methoprene effect on Aedes aegypti development in laboratory conditions. Memorias do Instituto Oswaldo Cruz, 100, 435–440.

    Article  CAS  PubMed  Google Scholar 

  • Darriet, F., & Corbel, V. (2006). Laboratory evaluation of pyriproxyfen and spinosad, alone and in combination, against Aedes aegypti larvae. Journal of Medical Entomology, 43(6), 1190–1194.

    Article  CAS  PubMed  Google Scholar 

  • De Wael, L., DeGreef, M., & VanLacre, O. (1995). Toxicity of pyriproxyfen and fenoxycarb to bumble bee brood using a new method for testing insect growth regulators. Journal of Agricultural Research., 34, 3–8.

    Google Scholar 

  • Dhadialla, T. S., Retnakaran, A., & Smagghe, G. (2005). Insect growth and development-disrupting insecticides. In L. I. Gilbert, I. Kostas, & S. K. Gill (Eds.), Comprehensive Insect Molecular Science (Vol. 6, pp. 55–116). New York: Pregamon Press.

    Chapter  Google Scholar 

  • Dhadialla, T. S., Carlson, G. R., & Le, D. P. (1998). New Insecticides with ecdysteroidal and juvenile hormone activity. Annual Review of Entomology, 43, 545–569.

    Article  CAS  PubMed  Google Scholar 

  • Dhir, B. C., Mohapatra, H. K., & Senapati, B. (1992). Assessment of crop loss in groundnut due to tobacco caterpillar, Spodoptera litura (F.). Indian Journal of Plant Protection, 20(7-10), 215–217.

    Google Scholar 

  • Eliahu, M., Blumberg, D., Horowitz, A. R., & Ishaaya, I. (2007). Effect of pyriproxyfen on developing stages and embryogenesis of California red scale (CRS), Aonidiella aurantii. Pest Management Science, 63(8), 743–746.

    Article  CAS  PubMed  Google Scholar 

  • El-Sheikh, E.-S. A., & Aamir, M. M. (2011). Comparative effectiveness and field persistence of insect growth regulators on a field strain of the cotton leafworm, Spodoptera littoralis, Boisd (Lepidoptera: Noctuidae). Crop Protection, 30, 645–650.

    Article  CAS  Google Scholar 

  • Ellsworth, P. C., Diehl, J. W., Kirk, I. W., & Henneberry, T. J. (1997). Whitefly growth regulators, large – scale evaluation. In J. Silvertooth (Ed.), Cotton, A College of Agriculture Report (pp. 279–293). Tucson, AZ: University of Arizona Cooperative Extension Service.

    Google Scholar 

  • Eto, M. (1990). Biochemical mechanism of insecticidal activities. In G. Hang & H. Hoffman (Eds.), Chemistry of Plant Protection (pp. 65–107). Verlag: Springer.

    Google Scholar 

  • Ghasemi, A., Sendi, J. J., & Ghadamyari, M. (2010). Physiological and biological effects of pyriproxyfen on Indian meal moth Plodia interpunctella (Hubner)(Lepidoptera: Pyralidae). Journal of Plant Protection Research, 50(4), 416–422.

    Article  Google Scholar 

  • Ghoneim, K. S., & Ismail, I. E. (1995). Assessment of the juvenile hormone activity of pyriproxyfen against Schistocerca gregaria (Forsk.) (Orthoptera, Acrididae) after treating the two late nymphal instars. Journal of the Egyptian German Society of Zoology, 17(E), 55–90.

    Google Scholar 

  • Ghoneim, K. S., Al-Dali, A. G., & Abdel-Ghaffar, A. A. (2003). Effectiveness of Lufenuron (CGA-184699) and Diofenolan (CGA- 59205) on the general body metabolism of the red palm weevil, Rhynchophorus ferrugineus (Curculionidae: Coleoptera). Pakistan Journal of Biological Sciences, 6(13), 1125–1129.

    Article  Google Scholar 

  • Ghoneim, K.S., Bream, A.S., Tanani, M.A. & Nassar, M.I. (2007). Efficacy of Lufenuron (CGA-184699) and Diofenolan (CGA- 59205) on survival, growth and development of red palm weevil, Rhynchophorus ferrugineus (Coleoptera: Curculionidae) in 59th Int. Symposium on Crop Protection, Ghent, Belgium.

  • Gilbert, L. I., Granger, N. A., & Roe, R. M. (2000). The juvenile hormones: historical facts and speculations on future research directions. Insect Biochemistry and Molecular Biology, 30, 617–644.

    Article  CAS  PubMed  Google Scholar 

  • Goodman, W. G., & Granger, N. A. (2005). The juvenile hormones. In L. I. Gilbert, K. Iatrou, & S. S. Gill (Eds.), Comprehensive Molecular Insect Science (Vol. 3, pp. 319–408). Oxford: Elsevier Ltd.

    Chapter  Google Scholar 

  • Granett, J., Robertson, J., & Retnakaran, A. (1980). Metabolic basis of differential susceptibility of two forest lepidopterans to Diflubenzuron. Entomologia Experimentalis et Applicata, 28, 295.

    Article  CAS  Google Scholar 

  • Harburguer, L. V., Seccacini, E., Masuh, H., Audino, P. G., Zerba, E., & Licastro, S. (2009). Thermal behaviour and biological activity against Aedes aegypti (Diptera: Culicidae) of permethrin and pyriproxyfen in a smoke – generating formulation. Pest Management Science, 65, 1208–1244.

    Article  CAS  PubMed  Google Scholar 

  • Hirano, M., Hatakoshi, M., Kawada, H., & Takimoto, Y. (1998). Pyriproxyfen and other juvenile hormone analogues. Reviews in Toxicology, 2, 375–394.

    Google Scholar 

  • Hoffmann, K. H., & Lorenz, M. W. (1998). Recent Advances in Hormones in Insect pest control. Phytoparasitica, 26(4), 223–230.

    Article  Google Scholar 

  • Invest, J. F., & Lucas, J. R. (2008). Pyriproxyfen as a mosquito larvicide. In H. Robinson & B. Daniel (Eds.), Proceedings of Sixth International Conference on Urban Pests. Hungary: William Oak Press.

    Google Scholar 

  • Ishaaya, I., & Horowitz, A. R. (1992). Novel phenoxy hormone analog (pyriproxyfen) supresses embryogenesis and adult emergence of sweet potato whitefly. Journal of Economic Entomology, 85, 2113–2117.

    Article  CAS  Google Scholar 

  • Ishaaya, I., De Cock, A., & Degheele, D. (1994). Pyriproxyfen, a potent suppressor of egg hatch and adult formation of the greenhouse whitefly (Homoptera: Aleyrodidae). Journal of Economic Entomology, 87, 1185–1189.

    Article  CAS  Google Scholar 

  • Kabashima, J. N., Greenberg, L., Rust, M. K., & Paine, T. D. (2007). Aggressive interactions between Solenopsis invicta and Linepithema humile (Hymenoptera: Formicidae) under laboratory conditions. Journal of Economic Entomology, 100(1), 148–154.

    Article  CAS  PubMed  Google Scholar 

  • Kamita, S. G., Hinton, A. C., Wheelock, C. E., Wogulis, M. D., Wilson, D. K., Wolf, N. M., Stok, J. E., Hoc, B., & Hammock, B. D. (2003). Juvenile hormone (JH) esterase: why are you so JH specific? Insect Biochemistry and Molecular Biology, 33, 1261–1273.

    Article  CAS  PubMed  Google Scholar 

  • Kerns, D. L., & Stewart, S. D. (2000). Sublethal effects of insecticides on the intrinsic rate of increase of cotton aphid. Entomologia Experimentalis et Applicata, 94, 41–49.

    Article  CAS  Google Scholar 

  • Koçak, E., & Kilinçer, N. (1997). Juvenil hormone analoğu methopreń in pamuk yaprak kurdu Spodoptera littoralis Boist. (Lep.: Noctuidae) na etkileri: 1. pupa ve yumurta etkiler. Bitki koruma Bületeni, 37, 163–172.

    Google Scholar 

  • Kwada, H., Senbo, S., & Abe, Y. (1992). Effects of pyriproxyfen on the reproduction of the housefly, Musca domestica, and the German cockroach, Blattella germanica. Japanese Journal of Sanitation and Zoology, 43, 169–175.

    Google Scholar 

  • Lim, S. P., & Lee, C. Y. (2005). Effects of Juvenile Hormone Analogs on New Reproductives and Colony Growth of Pharaoh Ant (Hymenoptera: Formicidae). Journal of Economic Entomology, 98(6), 2169–2175.

    Article  CAS  PubMed  Google Scholar 

  • Liu, T. X., & Stanley, P. A. (1997). Effects of pyriproxyfen on three species of Encarsia (Hymemoptera: Aphelinidae), endoparasite of Bemisia argentifolii (Homotera: Alegrodidae). Journal of Economic Entomology, 90, 404–411.

    Article  CAS  Google Scholar 

  • Liu, T. X. (2003). Effects of a juvenile hormone analog, pyriproxyfen, on Thrips tabaci (Thysanoptera: Thripidae). Pest Management Science, 59, 904–912.

    Article  CAS  PubMed  Google Scholar 

  • Mallikarjuna, N., Kranthi, K. R., Jadhav, D. R., Kranthi, S., & Chandra, S. (2004). Influence of foliar chemical compounds on the development of Spodoptera litura (Fab.) in inter-specific derivatives of groundnut. Journal of Applied Entomology, 128, 321–328.

    Article  CAS  Google Scholar 

  • Medina, P., Budia, F. E. P., & Viñuela, E. (2003). Effects of three modern insecticides, pyriproxyfen, spinosad and tebufenozide on survival and reproduction of Chrysoperla carnea adults. Annals of Applied Biology, 142, 55–61.

    Article  CAS  Google Scholar 

  • Meola, R., Meier, K., Dean, S., & Bhaskaran, G. (2000). Effects of pyriproxyfen in the blood diet of catfleas on adult survival, egg development and larval development. Journal of Medical Entomolog, 37, 503–506.

    Article  CAS  Google Scholar 

  • Michaelakis, A., Porichi, A.-E., & Koliopoulos, G. (2009). Activity of pyriproxyfen, an insect growth regulator on Culex pipiens (Diptera: Culicidae). Hellenic Plant Protection Journal, 2, 41–46.

    Google Scholar 

  • Moadeli, T., Hezagi, M. J., & Golmaohammadi, G. (2014). Lethal effects of pyriproxyfen, spinosad and indoxacarb sublethal effects of pyriproxyfen on the 1st instar larvae of Beet Armyworm, Spodoptera exigua Hubner (Lepidoptera: Noctuidae) in the laboratory. Journal of Agriculture Science and Technology, 16, 1217–1227.

    Google Scholar 

  • Mojaver, M., & Bandani, A. R. (2010). Effects of the insect growth regulator pyriproxyfen on immature stages of Sunn pest, Eurygaster integriceps Puton (Heteroptera: Scutelleridae). Munis Entomology and Zoology Journal, 5(1), 187–197.

    Google Scholar 

  • Nagai, K. (1990). Effects of a juvenile hormone mimic material, 4-phenoxyphenyl (RS)-2(2-pyridyloxy) propyl ether, on Thrips palmi and its predator Orius spp. Applied Entomology and Zoology, 25, 199–204.

    CAS  Google Scholar 

  • Nasr, H. M., Badawy, M. E. I., & Rabea, E. I. (2010). Toxicity an dbiochemical study of two insect growth regulators, buprofezin and pyriproxyfen, on cotton leafworm Spodoptera littoralis. Pesticide Biochemistry and Physiology, 98, 198–205.

    Article  CAS  Google Scholar 

  • Nijhout, H. F. (1998). Insect Hormones (4th ed., pp. 1–267). Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Novrozidis, E. I., Zartaloudis, Z. D., & Papadopoulou, S. H. (1999). Biology and control of San Jose scale, Quadraspidiotus perniciosus (Comstock) (Hemiptera, Diaspididae) on apricot trees in northern Greece. Acta Horticulturae, 488, 695–698.

    Google Scholar 

  • Oouchi, H. (2005). Insecticidal properties of a juvenoid pyriproxyfen, on all life stages of the diamond back moth, Plutella xyllostella (Lepidoptera: Yponomeutidae). Applied Entomology and Zoology, 40, 145–149.

    Article  CAS  Google Scholar 

  • Paloukis, S. S., Novrozidis, E. I., & Kukuryanism, V. H. (1997). Contribution to the integrated control of Pseudaulacaspis pentagona Targ.-Toz. (Homoptera:Diaspididae) on kiwifruit trees (Actinidia chinensis). Acta Horticulturae, 444, 797–802.

    CAS  Google Scholar 

  • Paul, A., Harrington, L. C., Zhang, L., & Scott, J. F. (2005). Insecticide resistance in Culex pipiens from New York. Journal of American Mosquito Control Association, 21, 305–309.

    Article  CAS  Google Scholar 

  • Pedigo, L. P. (2002). Entomology and pest management. In Stewart, C.E. Jr, Yarnell D. (Eds.), 4th edn. Pearson Education, Singapore, pp 742.

  • Reid, B. L., Brock, V. L., & Bennett, G. W. (1994). Development, morphogenetic and reproductive effects of four polycyclic nonisoprenoid juvenoids in the German cockroach (Dictyoptera: Blattellidae). Journal of Entomological. Science, 29, 31–42.

    CAS  Google Scholar 

  • Ross, M. H., & Cochran, D. G. (1991). Effects on German cockroach nymphs on contact exposure to IGRs, singly and in combination. Entomologia Experimentalis et Applicata, 61(2), 117–122.

    Article  CAS  Google Scholar 

  • Saltzmann, K. A., Saltzmann, K. D., Neal, J. J., Scharf, M. E., & Bennett, G. W. (2006). Effects of the juvenile hormone analog pyriproxyfen on German cockroach, Blattella germanica (L.), tergal gland development and production of tergal gland secretion proteins. Archives of Insect Biochemistry and Physiology, 63, 15–23.

    Article  CAS  PubMed  Google Scholar 

  • Schneider, M. I., Smagghe, G., Pineda, S., & Vinuela, E. (2004). Action of insect growth regulator insecticides and spinosad on life history parameters and absorption in third instar larvae of the endoparasitoid Hyposoter didymator. Biological control, 31, 189–198.

    Article  CAS  Google Scholar 

  • Smagghe, G., & Degheele, D. (1994). Action of a novel nonsteroidal ecdysteroids mimic tebufenozide (RH-5992), on insects of different orders. Pesticide Science, 42(2), 85–92.

    Article  CAS  Google Scholar 

  • Streibert, H. P., Frischknecht, M. L., & Karrer, F. (1994). Diofenolan – a new insect growth regulator for the control of scale insects and important lepidopterous pests in deciduous fruit and citrus. Proceedings of Brighton Crop Protection Conference on Pest and Diseases, 1, 23–30.

    Google Scholar 

  • Sullivan, J. (2000) Environmental fate of Pyriproxyfen. Sacramento, CA, Department of Pesticide regulation. http://www.cdpr.ca.gov/docs/empm/pubs/fatememo/pyrprxn.pdf.

  • Thomson, C., Tomkins, A.R. & Wilson D.J. (1996). Effect of insecticides on immature and mature stages of Encarsia citrine, an armoured scale parasitoid. Proceedings of the 49th New Zealand Plant Protection Conference, 1-5.

  • Tomkins, A.R., Follas, G., Thomson, C., & Wilson, D.J. (1994). A new insect growth regulator, CGA -59205 with promising activity against scale insects. Proceedings of the 47th New Zealand Plant Protection Conference, 337-340.

  • Tunaz, H., & Uygun, N. (2004). Insect Growth Regulators for Insect pest control. Turkish Journal of Agriculture and Forestry, 28, 377–387.

    CAS  Google Scholar 

  • Van Laecke, K., & Degheele, D. (1993). Effect of insecticide – synergist combinations on the survival of Spodoptera exigua (Hubner). Pesticide Science, 37, 283–288.

    Article  Google Scholar 

  • Webb, G., Miller, P., Peters, B., Keats, A., & Scott, W. (2011). Efficacy, environmental persistence and nontarget Impacts of pyriproxyfen use against Aedes vigilax in Australia. In W. H. Robinson & A. E. C. Campos (Eds.), Proceedings of the Seventh International conference on Urban Pests (pp. 151–157). São Paulo, SP. Brazil: Instituto Biológico.

    Google Scholar 

  • Wilson, T. G. (2004). The molecular site of action of juvenile hormone and juvenile hormone insecticides during metamorphosis: how these compounds kill insects. Journal of Insect Physiology, 50, 111–121.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The corresponding author thanks Council of Scientific and Industrial Research (CSIR) New Delhi for Research Associateship (09/001/(0376)/2013/EMR-I) and University Grants Commission (UGC), New Delhi for the financial assistance for purchasing the juvenoids [UGC major research project: 33-354/2007(SR)]sanctioned to Prof. Kumar. The authors express their gratitude to the anonymous reviewers, whose comments contributed to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satya Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, S., Kumar, K. Comparative efficacy of phenoxy derivative JHAs Pyriproxyfen and Diofenolan against polyphagous pest Spodoptera litura (Fabricius) (Noctuidae: Lepidoptera). Phytoparasitica 43, 553–563 (2015). https://doi.org/10.1007/s12600-015-0473-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12600-015-0473-2

Keywords

Navigation