Skip to main content
Log in

Preparation and characterization of single (200)-oriented TiN thin films deposited by DC magnetron reactive sputtering

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Single (200)-oriented TiN thin films were deposited on quartz substrate by direct current (DC) magnetron reactive sputtering process at a wide range of substrate temperature from 200 to 600 °C. The effects of sputtering pressure and substrate temperature on the crystalline nature, morphology, electrical and optical properties of the deposited thin films were analyzed by X-ray diffraction (XRD), atomic force microscopy (AFM), four-point resistivity test system and ultraviolet visible near-infrared (UV-Vis-NIR) spectroscopy, respectively. The results show that single (200)-oriented TiN thin films can be obtained at a wide range of substrate temperature from 200 to 600 °C with the grain size increasing from 35.9 to 64.5 nm. The resistivity of the product is as low as 95 μΩ·cm, and the value of the optical reflectance is above 68 % in the near-infrared (NIR) range of 760–1500 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Roquiny Ph, Bodart F, Terwagne G. Colour control of titanium nitride coatings produced by reactive magnetron sputtering at temperature less than 100 °C. Surf Coat Technol. 1999;116–119:278.

    Article  Google Scholar 

  2. Kirchner CN, Hallmeier KH, Szargan R, Raschke T, Radehaus C. Evaluation of thin film titanium nitride electrodes for electroanalytical applications. Electroanalysis. 2007;19(3):1023.

    Article  CAS  Google Scholar 

  3. Tao M, Udeshi D, Agarwal S, Maldonado E, Kirk WP. Negative Schottky barrier between titanium and n-type Si (001) for low-resistance ohmic contacts. Solid State Electron. 2004;48(12):335.

    Article  CAS  Google Scholar 

  4. Naik GV, Schroeder JL, Ni X, Kildishev AV, Sands TD, Boltasseva A. Titanium nitride as a plasmonic material for visible and near-infrared wavelengths. Opt Express. 2012;2:478.

    Article  CAS  Google Scholar 

  5. Cyster LA, Grant DM, Parker KG, Parker TL. The effect of surface chemistry and structure of titanium nitride (TiN) films on primary hippocampal cells. Biomol Eng. 2002;19(2–6):171.

    Article  CAS  Google Scholar 

  6. Gong YS, Tu R, Goto T. Study on the electrical and optical properties of vanadium doped TiN thin films prepared by atmospheric pressure chemical vapor. J Alloys Compd. 2009;485:451.

    Article  CAS  Google Scholar 

  7. Tanno Y, Azushima A. Effect of counter materials on coefficients of friction of TiN coatings with preferred grain orientations. Wear. 2009;266(11–12):1178.

    Article  CAS  Google Scholar 

  8. Krella A. Cavitation erosion of TiN and CrN coatings deposited on different substrates. Wear. 2013;297(1–2):992.

    Article  CAS  Google Scholar 

  9. Subramanian B, Ashok K, Jayachandran M. Effect of substrate temperature on the structural properties of magnetron sputtered titanium nitride thin films with brush plated nickel interlayer on mild steel. Appl Surf Sci. 2008;255(5):2133.

    Article  CAS  Google Scholar 

  10. Kumar M, Mishra S, Mitra R. Effect of Ar: N2 ratio on structure and properties of Ni–TiN nanocomposite thin films processed by reactive RF/DC magnetron sputtering. Surf Coat Technol. 2013;228:100.

    Article  CAS  Google Scholar 

  11. Arshi N, Lu JQ, Koo BH, Lee CG, Ahmed F. Effect of nitrogen flow rate on the properties of TiN film deposited by E-beam evaporation technique. Appl Surf Sci. 2012;258(22):8498.

    Article  CAS  Google Scholar 

  12. Abadias G. Stress and preferred orientation in nitride-based PVD coatings. Surf Coat Technol. 2008;202(11):2223.

    Article  CAS  Google Scholar 

  13. Shin HJ, Cho YJ, Won JY, Kang HJ, Baeg CH, Hong JW, Wey MY. Change of preferred orientation in TiN thin films grown by ultrahigh vacuum reactive ion beam assisted deposition. Nucl Instrum Methods Phys Res B. 2002;190(1–4):807.

    Article  CAS  Google Scholar 

  14. Kasukabe Y, Ito A, Nagata S, Kishimoto M, Fujino Y, Yamaguchi S, Yamada Y. Control of epitaxial orientation of TiN thin films grown by N-implantation. Appl Surf Sci. 1998;130–132:643.

    Article  Google Scholar 

  15. Kumar A, Singh D, Kumar R, Kaur D. Effect of crystallographic orientation of nanocrystalline TiN on structural, electrical and mechanical properties of TiN/NiTi thin films. J Alloys Compd. 2009;479(1–2):166.

    Article  CAS  Google Scholar 

  16. Jones MI, McColl IR, Grant DM. Effect of substrate preparation and deposition conditions on the preferred orientation of TiN coatings deposited by RF reactive sputtering. Surf Coat Technol. 2000;132(2–3):143.

    Article  CAS  Google Scholar 

  17. Mukherjee S, Prokert F, Richter E, Moeller W. Intrinsic stress and preferred orientation in TiN coatings deposited on Al using plasma immersion ion implantation assisted deposition. Thin Solid Films. 2003;445(1):48.

    Article  CAS  Google Scholar 

  18. Azushima A, Tanno Y, Iwata H, Aoki K. Coefficients of friction of TiN coatings with preferred grain orientations under dry condition. Wear. 2008;265(11–12):1017.

    Article  CAS  Google Scholar 

  19. Pelleg J, Zevin LZ, Lungo S, Croitoru N. Reactive-sputter-deposited TiN films on glass substrates. Thin Solid Films. 1991;197(1–2):117.

    Article  CAS  Google Scholar 

  20. Yokota K, Nakamura K, Kasuya T, Mukai K, Ohnishi M. Resistivities of titanium nitride films prepared onto silicon by an ion beam assisted deposition method. J Phys D Appl Phys. 2004;37:1095.

    Article  CAS  Google Scholar 

  21. Yeh TS, Wu JM, Hu LJ. The properties of TiN thin films deposited by pulsed direct current magnetron sputtering. Thin Solid Films. 2008;516(21):7294.

    Article  CAS  Google Scholar 

  22. Zhao GL, Zhao C, Wu L, Duan GF, Wang JX, Han GR. Study on the electrical and optical properties of vanadium doped TiN thin films prepared by atmospheric pressure chemical vapor. J Alloys Compd. 2013;569:1.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the National Natural Science Foundation of China and External science and technology cooperation program of Jiangxi Province (Nos. 11364032 and 20151BDH80030).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen-Dong Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, ZD., Lai, ZQ. Preparation and characterization of single (200)-oriented TiN thin films deposited by DC magnetron reactive sputtering. Rare Met. 41, 1380–1384 (2022). https://doi.org/10.1007/s12598-015-0517-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-015-0517-2

Keywords

Navigation