Skip to main content
Log in

Phase transformation kinetics of Ti-1300 alloy during continuous heating

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The α + β → β phase transformation kinetics of Ti-1300 alloy during continuous heating at different heating rates were investigated using dilatometric method. Results show that the curves of the α + β → β phase transformation exhibit a typical S-shaped pattern, which indicates that the α + β → β phase transformation is a nucleation-growth-controlled process. The overall activation energy of the α + β → β transformation of the alloy is 797 kJ·mol−1. The nucleation and growth mechanism of the α + β → β transformation was also investigated using the non-isothermal Avrami exponent. The Avrami exponent during α + β → β transformation process significantly changes with transformed volume fraction increasing, which indicates that the α + β → β transformation mechanism in the Ti-1300 alloy varies at different sections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Leyens C, Peters M. Titanium and Titanium Alloys. Weinheim: WILEY-VCH Verlag GmbH & Co. KGaA; 2003. 37.

  2. Setti SG, Rao RN. Artificial neural network approach for prediction of stress–strain curve of near β titanium alloy. Rare Met. 2014;33(3):249.

    Article  Google Scholar 

  3. Bouyer RR. An overview on the use of titanium in the aerospace industry. Mater Sci Eng A. 1996;213(1–2):103.

    Article  Google Scholar 

  4. Xu T, Peng X, Jiang J, Chen J, Yi H. Progress in welding of titanium alloy and dissimilar materials. Chin J Rare Met. 2014;38(4):711.

    Google Scholar 

  5. Chen Y, Du Z, Xiao S, Xu L, Tian J. Effect of aging heat treatment on microstructure and tensile properties of a new β high strength titanium alloy. J Alloys Compd. 2014;586:588.

    Article  Google Scholar 

  6. Du Z, Xiao S, Xu L, Tian J, Kong F, Chen Y. Effect of heat treatment on microstructure and mechanical properties of a new β high strength titanium alloy. Mater Des. 2014;55:183.

    Article  Google Scholar 

  7. Dai JR, Lu HM, Cai ZJ, An C. Grain refining of Er added to Ti-22Al-25Nb alloy and morphology of erbium precipitates. Rare Met. 2013;32(1):5.

    Article  Google Scholar 

  8. Zhao Y, Hong Q. Metallograph of Titanium and Titanium Alloy. Changsha: Central South University Press; 2011. 125.

  9. Zhao Y, Ge P, Zhao Y, Yang G. Weng J. Hot deformation behavior of Ti-1300 alloy. Rare Met Mater Eng. 2009;38(1):46.

    Google Scholar 

  10. Zhao Y, Ge P, Yang G, Zhao Y, Mao X. Forging simulation of Ti-1300 alloy by hot compressing testing. Rare Met Mater Eng. 2009;38(3):550.

    Google Scholar 

  11. Wen J, Ge P, Yang G, Mao X, Zhou W. Effect of heat treatment process on microstructure and tensile properties of Ti-1300 alloy. Rare Met Mater Eng. 2009;38(8):1490.

    Google Scholar 

  12. Liu YC, Sommer F, Mittemeijer EJ. Abnormal austenite ferrite transformation behaviour in substitute Fe-base alloy. Acta Mater. 2003;51(2):507.

    Article  Google Scholar 

  13. Shah AK, Kulkarni GJ, Gopinathan V, Krishnan R. Determination of activation energy for α + β ⇒ β transformation in Ti-6Al-4V alloy by dilatometry. Scripta Metall Mater. 1995;32(9):1353.

    Article  Google Scholar 

  14. Wang Y, Kou H, Chang H, Zhu Z, Su X, Li J, Zhou L. Phase transformation in TC21 alloy during continuous heating. J Alloys Compd. 2009;472(1–2):252.

    Article  Google Scholar 

  15. Zhu TK, Li MQ. Effect of hydrogen on the β transus temperature of TC21 alloy. Mater Charact. 2011;62(9):852.

    Article  Google Scholar 

  16. Szkliniarz W, Smotka G. Analysis of volume effects of phase transformation in titanium alloys. J Mater Process Technol. 1995;53(1–2):413.

    Article  Google Scholar 

  17. Christian JW. The Theory of Transformations in Metals and Alloys. New York: Oxford; 1975. 529.

  18. Liu F, Sommer F, Mittemeijer EJ. Analysis of the kinetics of phase transformations; roles of nucleation index and temperature dependent site saturation, and recipes for the extraction of kinetic parameters. J Mater Sci. 2007;42(2):573.

    Article  Google Scholar 

  19. Zhou Z, Lai M, Tang B, Kou H, Chang H, Zhu Z, Li J, Zhou L. Non-isothermal phase transformation kinetics of ω phase in TB-13 titanium alloys. Mater Sci Eng A. 2010;527(20):5100.

    Article  Google Scholar 

  20. Blázquez JS, Conde CF, Conde A. Non-isothermal approach to isokinetic crystallization processes: application to the nanocrystallization of HITPERM alloys. Acta Mater. 2005;53(8):2305.

    Article  Google Scholar 

  21. Lu W, Yan B, Huang W. Complex primary crystallization kinetics of amorphous Finemet alloy. J Non Cryst Solids. 2005;351(40–42):3320.

    Article  Google Scholar 

  22. Jiang XD, Zhang HW, Wen QY, Zhong ZY, Zheng Y, Tang XL. Crystallization kinetics of CoNbZr amorphous alloys thin films. Mater Chem Phys. 2004;88(1):197.

    Article  Google Scholar 

  23. Hui Q, Xue X, Kou H, Lai M, Tang B, Li J. Kinetics of the omega phase transformation of Ti-7333 titanium alloy during continuous heating. J Mater Sci. 2013;48(5):1966.

    Article  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the National Natural Science Foundation of China (No. 51401058), the Transformation Project of Major Scientific and Technological Achievements of Shanxi Province (No. 2012KTCG04-14), and the Science and Technology Innovation Team Project of Shanxi Province of China (No. 2012KCT-23).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-Pan Wan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan, MP., Zhao, YQ. & Zeng, WD. Phase transformation kinetics of Ti-1300 alloy during continuous heating. Rare Met. 34, 233–238 (2015). https://doi.org/10.1007/s12598-015-0472-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-015-0472-y

Keywords

Navigation