Skip to main content
Log in

Preparation of high-purity tellurium powder by hydrometallurgical method

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

This hydrometallurgical method consists of oxidation leaching, sulfide impurities removing, and sulfur dioxide reduction. The crude tellurium powder was treated by H2O2 oxidation for 2.0 h at pH 2.5 when adding 50 ml H2O2 (30 %) per 100 g raw material, a tellurium recover rate around 91 % is achieved. The tellurium leaching ratio can reach 98.9 % under 3.75 mol·L−1 NaOH concentration in liquid–solid ratio of 5:1 at 80 °C for 1.5 h. The overall separation of tellurium and other heavy metals is optimum at sulfide dosages of about 1.1 times of the theoretical values. The removal rates of Ag, Ni, Pb, and Cu from the solution are greater than 99.8 %, and As and Se removal rates are 98.6 % and 97.2 %, respectively. Over 99.5 % tellurium can be recovered by SO2 reaction when the operation is conducted at 85 °C in 6 mol·L−1 HCl solution. The tellurium powder with size of <5 μm and purity of >99.999 % is obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ba LA, Döring M, Jamier V, Jacob C. Tellurium: an element with great biological potency and potential. Org Biomol Chem. 2010;8(19):4203.

    Article  Google Scholar 

  2. Jasinski SM. “Tellurium” from Mineral Commodities Summary, US Bureau of Mines, Minerals Yearbook. Pennsylvania: Bernan Assoc; 1995. 172.

    Google Scholar 

  3. Deng ZT, Zhang Y, Yue JC, Tang FQ, Wei Q. Green and orange CdTe quantum dots as effective pH-sensitive fluorescent probes for dual simultaneous and independent detection of viruses. J Phys Chem B. 2007;111(41):12024.

    Article  Google Scholar 

  4. Bouroushian M. Electrochemistry of Metal Chalcogenides. In: Scholz F, editor. Berlin: Springer; 2010. 964.

  5. Zhang H, Swihart MT. Synthesis of tellurium dioxide nanoparticles by spray pyrolysis. Chem Mater. 2007;19(6):1290.

    Article  Google Scholar 

  6. Brown RD Jr. Selenium and Tellurium, US Geological Survey Minerals Yearbook. Pennsylvania: Bureau Assoc; 1994. 671.

    Google Scholar 

  7. Zhang Y, Li J, Hua YX, Meng GZ, Zhang Z, Wang Z. Thermodynamic analysis of gold telluride chlorination leaching process. Chin J Rare Met. 2001;37(3):461.

    Google Scholar 

  8. Pauporté T, Lincot D. Electrodeposition of semiconductors for optoelectronic devices: results on zinc oxide. Electrochim Acta. 2000;45(20):3345.

    Article  Google Scholar 

  9. Patil PS. Versatility of chemical spray pyrolysis technique. Mater Chem Phys. 1999;59(3):185.

    Article  Google Scholar 

  10. Liu W, Mitzi DB, Yuan M, Kellock AJ, Chey SJ, Gunawan O. 12% Efficiency CuIn(Se, S)2 photovoltaic device prepared using a hydrazine solution process. Chem Mater. 2009;22(3):1010.

    Article  Google Scholar 

  11. Hoffmann JE. Selenium and tellurium—rare but ubiquitous. JOM. 1989;41(7):32.

    Article  Google Scholar 

  12. Ha YC, Sohn HJ, Jeong GJ, Lee CK. RHEE K I. Electrowinning of tellurium from alkaline leach liquor of cemented Te. J Appl Electrochem. 2000;30(3):315.

    Article  Google Scholar 

  13. Lingane JJ, Niedrach LW. Polarography of selenium and tellurium. II. The +4 states. J Am Chem Soc. 1949;71(1):196.

    Article  Google Scholar 

  14. Panson AJ. A study of the telluride ion system. J Phys Chem. 1964;68(7):1721.

    Article  Google Scholar 

  15. Panson AJ. Polarography of the ditelluride ion. J Phys Chem. 1963;67(10):2177.

    Article  Google Scholar 

  16. Jamieson RA, Perone SP. Polarographic, coulometric, and stationary electrode studies of the electroreduction of Te (IV) in alkaline solution. J Electroanal Chem Interfacial Electrochem. 1969;23(3):441.

    Article  Google Scholar 

  17. Mishra KK, Ham D, Rajeshwar K. Anodic oxidation of telluride ions in aqueous base: a rotating ring-disk electrode study. J Electrochem Soc. 1990;137(11):3438.

    Article  Google Scholar 

  18. Sun Z, Zheng Y. Preparation of high pure tellurium from raw tellurium containing Cu and Se by chemical method. Trans Nonferrous Met Soc China. 2011;21(3):665.

    Article  Google Scholar 

  19. Tang Q. Treatment of chromium containing wastewater with sulfur dioxide. Environ Prot Chem Ind. 1998;6:347.

    Google Scholar 

  20. Cheng K, Zheng Y, Sun Z. Recycling Se and Te and capturing Pt and Pd from solution after precipitating gold by SO2 reduction. Chin J Nonferrous Met. 2011;21(9):2258.

    Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Science and Technology Department of Guangdong Province (No. 2011B0508000033).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya-Jie Zheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Zheng, YJ. & Sun, ZM. Preparation of high-purity tellurium powder by hydrometallurgical method. Rare Met. 33, 479–484 (2014). https://doi.org/10.1007/s12598-014-0338-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-014-0338-8

Keywords

Navigation