Skip to main content
Log in

Enhanced methanol electro-oxidation activity of PtNi alloy nanoparticles on the large surface area porous carbon

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

A kind of porous carbon (AC-K) with high surface area 2972 m2/g was obtained by treating activated carbon (AC) with KOH, which was investigated as the support for direct methanol fuel cell. PtNi nanoparticles were synthesized by chemical reduction with hydrazine using PVP as a stabilizer and deposited onto AC-K to produce PtNi/AC-K catalyst. Pt/AC-K and Pt/AC catalysts were also prepared under similar condition with the same nominal metal loading 20 wt.%. Their structures, morphologies, and electrocatalytic properties were investigated and compared. X-ray diffraction shows the alloy formation for Pt and Ni for PtNi/AC-K catalyst. Transmission electron microscopy reveals Pt/AC-K has a lower degree of agglomeration than Pt/AC. Moreover, PtNi/AC-K consists of nanoparticles with the lowest average particle size and best dispersion among the three catalysts. Nitrogen sorption at 77 K indicates that the potassium hydroxide activation can remarkably increase specific surface area and micropore volumes, which may be favorable for anchoring metal nanoparticle. Pt alloying with Ni may also contribute to the smaller particle size and better dispersion. Consequently, the activities of methanol oxidation investigated by cyclic voltammograms follow the order of PtNi/AC-K > Pt/AC-K > Pt/AC. Hence, the porous carbon AC-K and the corresponding catalyst PtNi/AC-K show great potential as support and less expensive electrocatalyst respectively for methanol electrooxidation in alkaline media in direct methanol fuel cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kim D.B., Chun H.J., Lee Y.K., Kwon H.H., and Lee H.I., Preparation of Pt/NiO-C electrocatalyst and heat-treatment effect on its electrocatalytic performance for methanol oxidation, Int. J. Hydrogen. Energ., 2010, 35(1): 313.

    Article  CAS  Google Scholar 

  2. Peng F., Zhou C.M., Wang H.J., Yu H., Liang J.H., and Yang J., The role of RuO2 in the electrocatalytic oxidation of methanol for direct methanol fuel cell, Catal. Commun., 2009, 10(5): 533.

    Article  CAS  Google Scholar 

  3. Wen Z.H., Liu J., and Li J.H., Core/Shell Pt/C nanoparticles embedded in mesoporous carbon as a methanol-tolerant cathode catalyst in direct methanol fuel cells, Adv. Mater., 2008, 20(4): 743.

    Article  CAS  Google Scholar 

  4. Sun Z.P., Zhang X.G., Liu R.L., Liang Y.Y., and Li H.L., A simple approach towards sulfonated multi-walled carbon nanotubes supported by Pd catalysts for methanol electrooxidation, J. Power Sources, 2008, 185(2): 801.

    Article  CAS  Google Scholar 

  5. Jeon M.K., Zhang Y., and McGinn P.J., Effect of reduction conditions on electrocatalytic activity of a ternary PtNiCr/C catalyst for methanol electro-oxidation, Electrochim. Acta, 2009, 54(10): 2837.

    Article  CAS  Google Scholar 

  6. Jeon M.K., and McGinn P.J., Composition dependence of ternary Pt-Ni-Cr catalyst activity for the methanol electro-oxidation reaction, J. Power Sources, 2009, 194(2): 737.

    Article  CAS  Google Scholar 

  7. Liu Z.L., Zhang X.H., and Hong L., Physical and electrochemical characterizations of nanostructured Pd/C and PdNi/C catalysts for methanol oxidation, Electrochem. Commun., 2009, 11(4): 925.

    Article  CAS  Google Scholar 

  8. Kadirgan F., Beyhan S., and Atilan T., Preparation and characterization of nano-sized Pt-Pd/C catalysts and comparison of their electro-activity toward methanol and ethanol oxidation, Int. J. Hydrogen. Eenerg., 2009, 34(10): 4312.

    Article  CAS  Google Scholar 

  9. Ando Y., Sasaki K., and Adzic R., Electrocatalysts for methanol oxidation with ultra low content of Pt and Ru, Electrochem. Commun., 2009, 11(6): 1135.

    Article  CAS  Google Scholar 

  10. Liu Y.C., Qiu X.P., Huang Y.Q., and Zhu W.T., Mesocarbon microbeads supported Pt-Ru catalysts for electrochemical oxidation of methanol, J. Power Sources, 2002, 111(1): 160.

    Article  CAS  Google Scholar 

  11. Lee K.R., Jeon M.K., and Woo S.I., Composition optimization of PtRuM/C (M = Fe and Mo) catalysts for methanol electro-oxidation via combinatorial method, Appl. Catal. B: Environ., 2009, 91(1–2): 428.

    Article  CAS  Google Scholar 

  12. Jeon M.K., Won J.Y., Lee K.R., and Woo S.I., Highly active PtRuFe/C catalyst for methanol electro-oxidation, Electrochem. Commun., 2007, 9(9): 2163.

    Article  CAS  Google Scholar 

  13. Jeon M.K., Lee K.R., Daimon H., Nakahara A., and Woo S.I., Pt45Ru45M10/C (M = Fe, Co, and Ni) catalysts for methanol electro-oxidation, Catal. Today, 2008, 132(1–4): 123.

    Article  CAS  Google Scholar 

  14. Choi J.H., Park K.W., Kwon B.K., and Sung Y.E., Methanol Oxidation on Pt/Ru, Pt/Ni, and Pt/Ru/Ni Anode Electrocatalysts at Different Temperatures for DMFCs, J. Electrochem. Soc., 2003, 150(7): A973.

    Article  CAS  Google Scholar 

  15. Wang Z.B., Yin G.P., Shi P.F., and Sun Y.C., Novel Pt-Ru-Ni/C catalysts for methanol electro-oxidation in acid medium, Electrochem. Solid State Lett., 2006, 9(1): A13.

    Article  CAS  Google Scholar 

  16. Pasupathi S., and Tricoli V., Effect of third metal on the electrocatalytic activity of PtRu/Vulcan for methanol electrooxidation, J. Solid State Electrochem., 2008, 12(9): 1093.

    Article  CAS  Google Scholar 

  17. Cooper J.S., and McGinn P.J., Combinatorial screening of thin film electrocatalysts for a direct methanol fuel cell anode, J. Power Sources, 2006, 163(1): 330.

    Article  CAS  Google Scholar 

  18. Strasser P., Fan Q., Devenney M., Weinberg W.H., Liu P., and Nørskov J.K., High throughput experimental and theoretical predictive screening of materials — A comparative study of search strategies for new fuel cell anode catalysts, J. Phys. Chem. B, 2003, 107(40): 11013.

    Article  CAS  Google Scholar 

  19. Jeon M.Ku., Cooper J.S., and McGinn P.J., Methanol electro-oxidation by a ternary Pt-Ru-Cu catalyst identified by a combinatorial approach, J. Power Sources, 2008, 185(2): 913.

    Article  CAS  Google Scholar 

  20. Jeon M.K., and McGinn P.J., Effect of Ti addition to Pt/C catalyst on methanol electro-oxidation and oxygen electroreduction reactions, J. Power Sources, 2010, 195(9): 2664.

    Article  CAS  Google Scholar 

  21. Wang Z.C., Ma Z.M., and Li H.L., Functional multi-walled carbon nanotube/polysiloxane composite films as supports of PtNi alloy nanoparticles for methanol electro-oxidation, Appl. Surf. Sci., 2008, 254(20): 6521.

    Article  CAS  Google Scholar 

  22. Zhao Y., E Y.F., Fan L.Z., Qiu Y.F., and Yang S.H., A new route for the electrodeposition of platinum-nickel alloy nanoparticles on multi-walled carbon nanotubes, Electrochim. Acta, 2007, 52(19): 5873.

    Article  CAS  Google Scholar 

  23. Liu Z.L., Ling X.Y., Su X.D., and Lee J.Y., Carbon-supported Pt and PtRu nanoparticles as catalysts for a direct methanol fuel cell, J. Phys. Chem. B, 2004, 108(24): 8234.

    Article  CAS  Google Scholar 

  24. Joo S.H., Choi S.J., Oh I., Kwak J., Liu Z., and Terasaki O., Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles, Nature, 2001, 412(6843): 169.

    Article  CAS  Google Scholar 

  25. Formo E., Peng Z.M., Lee E., Lu X.M., Yang H., and Xia Y.N., Direct oxidation of methanol on pt nanostructures supported on electrospun nanofibers of anatase, J. Phys. Chem. C, 2008, 112(27): 9970.

    Article  CAS  Google Scholar 

  26. Huang H.X., Chen S.X., and Yuan C., Platinum nanoparticles supported on activated carbon fiber as catalyst for methanol oxidation, J. Power Sources, 2008, 175(1): 166.

    Article  CAS  Google Scholar 

  27. Jiang Z.Q., Yu X.Y., Jiang Z.J., Meng Y.D., and Shi Y.C., Synthesis of monodispersed Pt nanoparticles on plasma processed carbon nanotubes for methanol electro-oxidation reaction, J. Mater. Chem., 2009, 19(37): 6720.

    Article  CAS  Google Scholar 

  28. Maiyalagan T., Synthesis and electro-catalytic activity of methanol oxidation on nitrogen containing carbon nanotubes supported Pt electrodes, Appl. Catal. B: Environ., 2008, 80(3–4): 286.

    Article  CAS  Google Scholar 

  29. Lei Z.B., An L.Z., Dang L.Q., Zhao M.Y., Shi J.Y., Bai S.Y., and Cao Y.D., Highly dispersed platinum supported on nitrogen-containing ordered mesoporous carbon for methanol electrochemical oxidation, Micropor Mesopor Mat., 2009, 119(1–3): 30.

    Article  CAS  Google Scholar 

  30. Su F.B., Zeng J.H., Bao X.Y., Yu Y.S., Lee J.Y., and Zhao X.S., Preparation and characterization of highly ordered graphitic mesoporous carbon as a Pt catalyst support for direct methanol fuel cells, Chem. Mater., 2005, 17(15): 3960.

    Article  CAS  Google Scholar 

  31. Xu C., Wang X., and Zhu J.W., Graphene-metal particle nanocomposites, J. Phys. Chem. C, 2008, 112(50): 19841.

    Article  CAS  Google Scholar 

  32. Si Y.C., and Samulski E.T., Exfoliated graphene separated by platinum nanoparticles, Chem. Mater., 2008, 20(21): 6792.

    Article  CAS  Google Scholar 

  33. Yoo E.J., Okata T., Akita T., Kohyama M., Nakamura J., and Honma I., Enhanced electrocatalytic activity of Pt subnanoclusters on graphene nanosheet surface, Nano Lett., 2009, 9(6): 2255.

    Article  CAS  Google Scholar 

  34. Li Y.M., Tang L.H., and Li J.H., Preparation and electrochemical performance for methanol oxidation of pt/graphene nanocomposites, Electrochem. Commun., 2009, 11(4): 846.

    Article  Google Scholar 

  35. Dong L.F., Gari R.R.S., Li Z., Craig M.M., and Hou S.F., Graphene-supported platinum and platinum-ruthenium nanoparticles with high electrocatalytic activity for methanol and ethanol oxidation, Carbon, 2010, 48(3): 781.

    Article  CAS  Google Scholar 

  36. Wang H.L., Gao Q.M., and Hu J., High hydrogen storage capacity of porous carbons prepared by using activated carbon, J. Am. Chem. Sos., 2009, 131(20): 7016.

    Article  CAS  Google Scholar 

  37. Liu Y., Xue J.X., Zheng T., and Dahn J. R., Mechanism of lithium insertion in hard carbons prepared by pyrolysis of epoxy resins, Carbon, 1996, 34(2): 193.

    Article  CAS  Google Scholar 

  38. Subramanian V., Luo C., Stephan A.M., Nahm K.S., and Wei B., Supercapacitors from activated carbon derived from banana fibers, J. Phys. Chem. C, 2007, 111(20): 7527.

    Article  CAS  Google Scholar 

  39. Bergamaski K., Pinheiro A.L.N., Neto E.T., and Nart F.C., Nanoparticle size effects on methanol electrochemical oxidation on carbon supported platinum catalysts, J. Phys. Chem. B, 2006, 110(39): 19271.

    Article  CAS  Google Scholar 

  40. Lei Z.B., Bai S.Y., Xiao Y., Dang L.Q., An L.Z., Zhang G.N., and Xu Q., CMK-5 mesoporous carbon synthesized via chemical vapor deposition of ferrocene as catalyst support for methanol oxidation, J. Phys. Chem. C, 2008, 112(3): 722.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiuming Gao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, S., Gao, Q. Enhanced methanol electro-oxidation activity of PtNi alloy nanoparticles on the large surface area porous carbon. Rare Metals 30 (Suppl 1), 42–47 (2011). https://doi.org/10.1007/s12598-011-0234-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-011-0234-4

Keywords

Navigation