Skip to main content
Log in

Frequency encoded data based optical full adder using reversible Toffoli gates

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

In WDM communication based networks the processors have to deal with large number of data. It is seen that the data loss becomes significant when the conventional logic gates have been used as the building block of the processors. The reversible logic gates already have established its utility due to its low power consumption and less hardware complexity. In case of reversible logic gate, inputs are directly mapped to outputs after performing some logic functions. As the inputs of the reversible gate can be uniquely recovered from the outputs, power loss is ideally zero. Toffoli gate, invented by Tommaso Toffoli is one of the most common universal reversible logic gates. It is a three-input-three-output reversible logic gate. In this article, authors have proposed a new technique of designing optical Toffoli gate, and subsequently propose a method of developing an optical full adder with the help of Toffoli gates. For this purpose the authors have deployed the polarization switching characteristic of semiconductor optical amplifier (SOA). The authors have exploited frequency encoded data due to the inherent identity. The proposed optical frequency encoded full adder will be a key component of an optical reversible Arithmetic Logic Unit (ALU), or any other reversible optical computing. Simulation results of the Toffoli gate based on theoretical model PSW show the feasibility of the of the proposed scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R. Landauer, Irreversibility and heat generation in the computing process. IBM J. Res. Dev. 5(3), 183–191 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  2. E. Fredkin, T. Toffoli, Conservative logic. Int. J. Theor. Phys. 21, 219–253 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  3. D. Mandal, S. Mandal, S.K. Garai, Alternative approach of developing all-optical Fredkin and Toffoli gates. Opt. Laser Technol. 72, 33–41 (2015)

    Article  ADS  Google Scholar 

  4. K.,.R. Chowdhury, D. Dey, S. Mukhopadhay, Parity checking and generating circuit with nonlinear material in all-optical domain. Chin. Phys. Lett. 22(6), 1433–1435 (2005)

    Article  Google Scholar 

  5. Y.A. Zaghloul, A.R.M. Zaghloul, Uniforced polarization based optical implementation of binary logic. Opt. Express 14(16), 7252–7269 (2006)

    Article  ADS  Google Scholar 

  6. A.A.S. Awwal, M.A. Karim, Microprocessor design using polarization encoded optical shadow casting. Appl. Opt. 29(14), 2107–2112 (1990)

    Article  ADS  Google Scholar 

  7. H.E. Michel, A.A.S. Awwal, Artificial neural networks using complex numbers and phase encoded weights. Appl. Opt. Eng. 49(10), B71–B82 (2010)

    Article  Google Scholar 

  8. S. K. Garai, A novel method of developing all optical frequency encoded Fredkin Gates. Opt. Commun. 13C, 441–447 (2014)

    Article  ADS  Google Scholar 

  9. S.K. Garai, Method of all-optical frequency encoded decimal to binary and binary to decimal, binary to gray, and gray to binary data conversion using semiconductor optical amplifier. Appl. Opt. 51(11), 1757–1764 (2012)

    Article  ADS  Google Scholar 

  10. H.J.S. Dorren, D. Lenstra, Y. Liu, M.T. Hill, G.-D. Khoe, Nonlinear polarization rotation in semiconductor optical amplifiers: theory and application to all-optical flip-flop memories. IEEE J. Quantum Electron. 39(1), 141–148 (2003)

    Article  ADS  Google Scholar 

  11. S. Mandal, D. Mandal, S.K. Garai, An all-optical method of developing data communication system with error detection circuit. Opt. Fiber Technol. 20(2), 120–129 (2014)

    Article  ADS  Google Scholar 

  12. D. Mandal, S. Mandal, S.K. Garai, A new approach of developing all-optical two-bit-binary data multiplier. Opt. Laser Technol. 64C, 292–301 (2014)

    Article  ADS  Google Scholar 

  13. D. Mandal, S.K. Garai, All-optical binary logic unit (BLU) using frequency encoded data. Opt. Fiber Technol. 22, 56–67 (2015)

    Article  ADS  Google Scholar 

  14. R. Aparna, S. Aswathy Chandran, Performance analysis of optical communication system using wavelength division and sub carrier multiplexing. IJERT. 04(01), 342–345 (2015)

  15. S. Bhatt, S. Jhaveri, A review of dense wavelength division multiplexing and next generation optical internet. IJESIT. 2(2), 404–412 (2013)

  16. L. Zhang, I. Kang, A. Bhardwaj, N. Sauer, S. Cabot, J. Jaques, D.T. Nielson, Reduced recovery time semiconductor optical amplifier using p-type-doped multiple quantumwells. IEEE Photon. Technol. Lett. 18(22), 2323–2325 (2006)

    Article  ADS  Google Scholar 

  17. F. Girardin, G. Guekos, A. Houbavlis, Gain recovery of bulk semiconductor optical amplifiers. IEEE Photon. Technol. Lett. 10(6), 784–786 (1998)

    Article  ADS  Google Scholar 

  18. R.J. Manning, D.A.O. Davies, Three-wavelength device for all-optical signal processing. Opt. Lett. 19(12), 889–891 (1994)

    Article  ADS  Google Scholar 

  19. M. Sugawara, T. Akiyama, N. Hatori, Y. Nakata, H. Ebe, H. Ishikawa, Quantum-dot semiconductor optical amplifiers for high-bit-rate signal processing up to 160 Gb/s and a new scheme of 3R regenerators. Meas. Sci. Technol. 13(11), 1683–1691 (2002)

    Article  ADS  Google Scholar 

  20. J. Wang, A. Marculescu, J. Li, P. Vorreau, S. Tzadok, S.B. Ezra, S. Tsadka, W. Freude, J. Leuthold, Pattern effect removal technique for semiconductor-optical-amplifier-based wavelength conversion. IEEE Photon. Technol. Lett. 19(24), 1955–1957 (2007)

    Article  ADS  Google Scholar 

  21. J. Leuthold, D.M. Marom, S. Cabot, J. Jaques, R. Ryf, C.R. Giles, All-optical wavelength conversion using a pulse reformatting optical filter. IEEE J. Lightwave Technol. 22(01), 186–192 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sisir Kumar Garai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandal, D., Mandal, M.K. & Garai, S.K. Frequency encoded data based optical full adder using reversible Toffoli gates. J Opt 45, 197–207 (2016). https://doi.org/10.1007/s12596-016-0322-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12596-016-0322-9

Keywords

Navigation