Skip to main content
Log in

Well-posedness and Energy Decay of Solutions to a Nonlinear Bresse System with Delay Terms

  • Original Research
  • Published:
Differential Equations and Dynamical Systems Aims and scope Submit manuscript

Abstract

We consider the Bresse system in bounded domain with delay terms in the nonlinear internal feedbacks

$$\begin{aligned} \left\{ {\begin{array}{l}\rho _{1}\varphi _{tt}-Gh (\varphi _{x}+\psi +l\omega )_{x}-lEh(\omega _{x}-l\varphi )+\mu _{1}g_1(\varphi _{t}(x,t)) +\mu _{2}g_2(\varphi _{t}(x,t-\tau _{1}))=0\\ \rho _{2}\psi _{tt}-EI\psi _{xx}+Gh(\varphi _{x}+\psi +l\omega ) +\widetilde{\mu _{1}}\widetilde{g_1}(\psi _{t}(x,t)) +\widetilde{\mu _{2}}\widetilde{g_2}(\psi _{t}(x,t-\tau _{2}))=0\\ \rho _{1}\omega _{tt}-Eh(\omega _{x}-l\varphi )_{x}+lGh(\varphi _{x}+\psi +l\omega ) +\widetilde{\widetilde{\mu _{1}}}\widetilde{\widetilde{g_1}}(\omega _{t}(x,t)) +\widetilde{\widetilde{\mu _{2}}}\widetilde{\widetilde{g_2}} (\omega _{t}(x,t-\tau _{3}))=0\\ \end{array}}\right. \end{aligned}$$

and prove the global existence of its solutions in Sobolev spaces by means by means of the energy method combined with the Faedo–Galerkin procedure under a condition between the weight of the delay terms in the feedbacks and the weight of the terms without delay. Furthermore, we study the asymptotic behavior of solutions using multiplier method and some weighted integral inequalities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abdallah, C., Dorato, P., Benitez-Read, J., Byrne, R.: Delayed Positive Feedback Can Stabilize Oscillatory System, pp. 3106–3107. ACC, San Francisco (1993)

    Google Scholar 

  2. Alabau-Boussouira, F.: On convexity and weighted integral inequalities for energy decay rates of nonlinear dissipative hyperbolic systems. Appl. Math. Optim. 51, 61–105 (2005)

    Article  MathSciNet  Google Scholar 

  3. Arnold, V.I.: Mathematical Methods of Classical Mechanics. Springer, New York (1989)

    Book  Google Scholar 

  4. Benaissa, A., Guesmia, A.: Energy decay for wave equations of \(\phi \)-Laplacian type with weakly nonlinear dissipation. Electron. J. Differ. Equ. 2008 (2008)

  5. Benaissa, A., Miloudi, M., Mokhtari, M.: Global existence and energy decay of solutions to a Bresse system with delay terms. Comment. Math. Univ. Carolin. 56(2), 169–186 (2015)

    MathSciNet  MATH  Google Scholar 

  6. Bresse, J.A.C.: Cours de Méchanique Appliquée. Mallet Bachelier, Paris (1859)

    MATH  Google Scholar 

  7. Cavalcanti, M.M., Cavalcanti, V.D., Lasiecka, I.: Well-posedness and optimal decay rates for the wave equation with nonlinear boundary damping-source interaction. J. Differ. Equ. 236, 407–459 (2007)

    Article  MathSciNet  Google Scholar 

  8. Datko, R., Lagnese, J., Polis, M.P.: An example on the effect of time delays in boundary feedback stabilization of wave equations. SIAM J. Control Optim. 24, 152–156 (1986)

    Article  MathSciNet  Google Scholar 

  9. Haraux, A.: Two remarks on dissipative hyperbolic problems, Research Notes in Mathematics, vol. 122. Pitman, Boston, pp. 161-179 (1985)

  10. Park, J.H., Kang, J.R.: Energy decay of solutions for Timoshenko beam with a weak non-linear dissipation. IMA J. Appl. Math. 76, 340–350 (2011)

    Article  MathSciNet  Google Scholar 

  11. Komornik, V.: Exact Controllability and Stabilization. The Multiplier Method. Masson-John Wiley, Paris (1994)

    MATH  Google Scholar 

  12. Kim, J.U., Renardy, Y.: Boundary control of the Timoshenko beam. SIAM J. Control Optim. 25, 1417–1429 (1987)

    Article  MathSciNet  Google Scholar 

  13. Lasiecka, I., Tataru, D.: Uniform boundary stabilization of semilinear wave equations with nonlinear boundary dampin. Differ. Integral Equ. 6, 507–533 (1993)

    MATH  Google Scholar 

  14. Lions, J.L.: Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod, Paris (1969)

    MATH  Google Scholar 

  15. Liu, W.J., Zuazua, E.: Decay rates for dissipative wave equations. Ricerche di Matematica XLVIII, 61–75 (1999)

    MathSciNet  MATH  Google Scholar 

  16. Liu, Z., Rao, B.: Energy decay rate of the thermoelastic Bresse system. Z. Angew. Math. Phys. 60, 54–69 (2009)

    Article  MathSciNet  Google Scholar 

  17. Messaoudi, S.A., Mustapha, M.I.: On the internal and boundary stabilization of Timoshenko beams. Nonlinear Differ. Equ. Appl. 15, 655–671 (2008)

    Article  MathSciNet  Google Scholar 

  18. Messaoudi, S.A., Mustafa, M.I.: On the stabilization of the Timoshenko system by a weak nonlinear dissipation. Math. Methods Appl. Sci. 32, 454–469 (2009)

    Article  MathSciNet  Google Scholar 

  19. Nicaise, S., Pignotti, C.: Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks. SIAM J. Control Optim. 45(5), 1561–1585 (2006)

    Article  MathSciNet  Google Scholar 

  20. Raposo, C.A., Ferreira, J., Santos, J., Castro, N.N.O.: Exponential stability for the Timoshenko system with two weak dampings. Appl. Math. Lett. 18(5), 535–541 (2005)

    Article  MathSciNet  Google Scholar 

  21. Suh, I.H., Bien, Z.: Use of time delay action in the controller design. IEEE Trans. Autom. Control 25, 600–603 (1980)

    Article  Google Scholar 

  22. Shinskey, F.G.: Process Control Systems. McGraw-Hill Book Company, New York (1967)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abbes Benaissa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benaissa, A., Miloudi, M. & Mokhtari, M. Well-posedness and Energy Decay of Solutions to a Nonlinear Bresse System with Delay Terms. Differ Equ Dyn Syst 28, 447–478 (2020). https://doi.org/10.1007/s12591-016-0339-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12591-016-0339-1

Keywords

Mathematics Subject Classification

Navigation