Skip to main content
Log in

On the Solution Set for Weighted Fractional Differential Equations in Banach Spaces

  • Original Research
  • Published:
Differential Equations and Dynamical Systems Aims and scope Submit manuscript

Abstract

The purpose of the work is to investigate the topological structure of the solution set of an initial value problems for nonlinear fractional differential equations in Banach space. We prove that the solution set of the problem is nonempty, compact and, an \(R_\delta \)-set by introducing a new regular measure of noncompactness in the weighted space of continuous functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abbas, S., Benchohra, M., N’Guérékata, G.M.: Topics in fractional differential equations. Springer, New York (2012)

    Book  Google Scholar 

  2. Abbas, S., Benchohra, M., N’Guérékata, G.M.: Advanced fractional differential and integral equations. Nova Science Publishers, New York (2015)

    MATH  Google Scholar 

  3. Aghajani, A., Pourhadi, E., Trujillo, J.J.: Application of measure of noncompactness to Cauchy problem for fractional differential equations in Banach spaces. Frac. Calc. Appl. Anal. 16, 362–377 (2013)

    MathSciNet  MATH  Google Scholar 

  4. Akhmerov, R.R., Kamenskii, M.I., Potapov, A.S., Rodkina, A.E., Sadovskii, B.N.: Measures of noncompactness and condensing operators. Birkhauser, Boston, Basel, Berlin (1992)

    Book  Google Scholar 

  5. Andres, J., Górniewicz, L.: Topological fixed point principles for boundary value problems. Kluwer, Dordrecht (2003)

    Book  Google Scholar 

  6. Aronszajn, N.: Le correspondant topologique de l’unicité dans la théorie des équations différentielles. Ann. Math. 43, 730–738 (1942)

    Article  MathSciNet  Google Scholar 

  7. Banas, J., Goebel, K.: Measure of Noncompactness in Banach Spaces. Lectures Notes in Pure and Applied Mathematics, 50, Marcel Dekker, New York (1980)

  8. Benchohra, M., Henderson, J., Ntouyas, S.K., Ouahab, A.: Existence results for fractional order functional differential equations with infinite delay. J. Math. Anal. Appl. 338, 1340–1350 (2008)

    Article  MathSciNet  Google Scholar 

  9. Bothe, D.: Multivalued perturbations of \(m\)-accretive differential inclusions. Israel J. Math. 108, 109–138 (1998)

    Article  MathSciNet  Google Scholar 

  10. Browder, F.E., Gupta, G.P.: Topological degree and nonlinear mappings of analytic type in Banach spaces. J. Math. Anal. Appl. 26, 390–402 (1969)

    Article  MathSciNet  Google Scholar 

  11. Chalco-Cano, Y., Nieto, J.J., Ouahab, A., Román-Flores, H.: Solution set for fractional differential equations with Riemann-Liouville derivative. Frac. Calc. Appl. Anal. 16, 682–694 (2013)

    MathSciNet  MATH  Google Scholar 

  12. Deimling, K.: Nonlinear functional analysis. Springer-Verlag, Berlin (1985)

    Book  Google Scholar 

  13. Diethelm, K.: Analysis of fractional differential equations. Springer-Verlag, Berlin (2010)

    Book  Google Scholar 

  14. Diethelm, K., Freed, A.D.: On the solution of nonlinear fractional order differential equations used in the modeling of viscoplasticity. In: Keil, F., Mackens, W., Voss, H., Werther, J. (eds.) Scientific computing in chemical engineering II-computational fluid dynamics, reaction engineering and molecular properties, pp. 217–224. Springer-Verlag, Heidelberg (1999)

    Google Scholar 

  15. Djebali, S., Górniewicz, L., Ouahab, A.: Solutions Sets for differential equations and inclusions. De Gruyter, Berlin (2013)

    Book  Google Scholar 

  16. Dragoni, R., Macki, J.W., Nistri, P., Zecca, P.: Solution Sets of Differential Equations in Abstract Spaces, Pitman Research Notes in Mathematics Series 342. Longman, Harlow (1996)

  17. Dutkiewicz, A.: On the Aronszajn property for an integro-differential equation of fractional order in Banach spaces. Dynam. Syst. Appl. 6, 138–142 (2012)

    MathSciNet  MATH  Google Scholar 

  18. Dutkiewicz, A., Szufla, S.: On the Aronszajn property for an implicit differential equation of fractional order. Z. Anal. Anwend. 29, 429–435 (2010)

    Article  MathSciNet  Google Scholar 

  19. Gaul, L., Klein, P., Kempfle, S.: Damping description involving fractional operators. Mech. Syst. Signal Process. 5, 81–88 (1991)

    Article  Google Scholar 

  20. Glockle, W.G., Nonnenmacher, T.F.: A fractional calculus approach of self-similar protein dynamics. Biophys. J. 68, 46–53 (1995)

    Article  Google Scholar 

  21. Henry, D.: Geometric theory of semilinear parabolic partial differential equations. Springer-Verlag, Berlin (1989)

    Google Scholar 

  22. Hernández, E., O’Regan, D.: On a new class of abstract impulsive differential equations. Proc. Am. Math. Soc. 141(5), 1641–1649 (2013)

    Article  MathSciNet  Google Scholar 

  23. Kamenskii, M., Obukhovskii, V., Zecca, P.: Condensing multivalued maps and semilinear differential inclusions in banach Spaces. De Gruyter, Berlin (2001)

    Book  Google Scholar 

  24. Kamenski, M., Obukhovski, V., Zecca, P.: On the translation multioperator along the solutions of semilinear differential inclusions in Banach spaces. Canad. Appl. Math. Qrt. 6, 139–154 (1998)

    MathSciNet  MATH  Google Scholar 

  25. Kilbas, A. A., Srivastava, H. M., Trujillo, J. J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, 204. Elsevier Science B.V., Amsterdam (2006)

  26. Mainardi, F.: Fractional calculus: some basic problems in continuum and statistical mechanis. In: Carpinteri, A., Mainardi, F. (eds.) Fractals and fractional calculus in continuum mechanics, pp. 291–348. Springer-Verlag, Wien (1997)

    Chapter  Google Scholar 

  27. Metzler, F., Schick, W., Kilian, H.G., Nonnenmacher, T.F.: Relaxation in filled polymers: a fractional calculus approach. J. Chem. Phys. 103, 7180–7186 (1995)

    Article  Google Scholar 

  28. Miller, K.S., Ross, B.: An introduction to the fractional calculus and differential equations. John Wiley, New York (1993)

    MATH  Google Scholar 

  29. Obukhovskii, V., Yao, J.C.: Some existence results for fractional functional differential equations. Fixed Point Theory 11, 85–96 (2010)

    MathSciNet  MATH  Google Scholar 

  30. Podlubny, I.: Fractional differential equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  31. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional integrals and derivatives theory and applications. Gordon and Breach, Yverdon (1993)

  32. Toledano, J.M.A., Benavides, T.D., Azedo, G.L.: Measures of noncompactness in metric fixed point theory. Birkhauser, Basel (1997)

    Book  Google Scholar 

  33. Zhou, Y.: Basic theory of fractional differential equations. World Scientific, Singapore (2014)

    Book  Google Scholar 

Download references

Acknowledgements

The author wishes to thank the referee for his (her) corrections and remarks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Ziane.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ziane, M. On the Solution Set for Weighted Fractional Differential Equations in Banach Spaces. Differ Equ Dyn Syst 28, 419–430 (2020). https://doi.org/10.1007/s12591-016-0338-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12591-016-0338-2

Keywords

Mathematics Subject Classification

Navigation