Skip to main content
Log in

Triangular Libration Points in the CR3BP with Radiation, Triaxiality and Potential from a Belt

  • Original Research
  • Published:
Differential Equations and Dynamical Systems Aims and scope Submit manuscript

Abstract

In this paper the equations of motion of the circular restricted three body problem is modified to include radiation of the bigger primary, triaxiality of the smaller primary; and gravitational potential created by a belt. We have obtained that due to the perturbations, the locations of the triangular libration points and their linear stability are affected. The points move towards the bigger primary due to the resultant effect of the perturbations. Triangular libration points are stable for \(0<\mu <\mu _c\) and unstable for \(\mu _c \le \mu \le \frac{1}{2}\), where \(\mu _c\) is the critical mass ratio affected by the perturbations. The radiation of the bigger primary and triaxiality of the smaller primary have destabilizing propensities, whereas the potential created by the belt has stabilizing propensity. This model could be applied in the study of the motion of a dust particle near radiating -triaxial binary system surrounded by a belt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Battista, E., Dell’Agnello, S., Esposito, G., Simo, J.: On the quantum effects on noncollinear Lagrangian points and displaced periodic orbits in the Earth-Moon system. 3,1–30 (2015). arXiv:1501.0272

  2. Bevis, N., Magueijo, J., Trenkel, C., Kemble, S.: MONDian three-body predictions for LISA Pathfinder. Class. Quantum Gravity 27(21), 215014 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bhatnagar, K.B., Chawla, J.M.: A study of the Lagrangian points in the photogravitational restricted three-body problem. Indian J. Pure Appl. Math. 10(11), 1443–1451 (1979)

    Google Scholar 

  4. Greaves, J.S., Holland, W.S., Moriarty-Schieven, G., Jenness, T., Dent, W.R.F., Zuckerman, B., Mccarthy, C., Webb, R.A., Butner, H.M., Gear, W.K., Walker, H.J.: A dust ring around \(\epsilon \) Eridani: analog to the young Solar System. Astrophys. J. 506, L133–L137 (1998)

    Article  Google Scholar 

  5. Guéron, E.: A semi-relativistic approach to the circular restricted three-body problem and a numerical experiment around the 3:2 resonance. Class. Quantum Gravity 23(3), 673–682 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Iorio, L.: Evidence of the gravitomagnetic field of Mars. Class. Quantum Gravity 23(17), 5451–5454 (2006)

    Article  MATH  Google Scholar 

  7. Iorio, L.: An assessment of the systematic uncertainty in present and future tests of the lense-thirring effect with satellite laser ranging. Space Sci. Rev. 148(1–4), 363–381 (2009)

    Article  Google Scholar 

  8. Iorio, L.: Perturbed steller motions around the rotating black hole Sgr A* for generic orientation of its spin axis. Phys. Rev. D 84(12), 124001 (2011)

    Article  Google Scholar 

  9. Iorio, L.: Orbital perturbations due to massive rings. Earth Moond Planets 108(3–4), 189–217 (2012)

    Article  MATH  Google Scholar 

  10. Iorio, L.: Orbital motions as gradiometers for post-Newtonian tidal effects. Front. Astron. Space Sci. (2014). doi:10.3389/fspas.2014.00003

  11. Iorio, L.: Gravitational anomalies in the solar system. Int. J. Mod. Phys. D (2015) (in press). arXiv:1412.7673

  12. Iorio, L., Lichtenegger, H.I.M., Ruggiero, M.L., Corda, C.: Phenomenology of the Lense–Thirring effect in the Solar System. Astrophys. Space Sci. 331(2), 351–395 (2011)

    Article  MATH  Google Scholar 

  13. Iorio, L., Ruggiero, M.L., Corda, C.: Novel consideration about the error budget of the LAGEOES-based tests of frame-dragging with GRACE geopotential models. Acta Astron. 91, 141–148 (2013)

    Article  Google Scholar 

  14. Jain, S., Kumar, A., Bhatnagar, K.B.: Periodic orbits around the collinear libration points in the restricted three body problem when the smaller primary is a triaxial rigid body : Sun-Earth case. Bull. Astron. Soc. India 34, 211–223 (2006)

    Google Scholar 

  15. Jiang, I.G., Yeh, L.C.: Bifurcation for dynamical systems of planet–belt interaction. Int. J. Bifurc. Chaos 13(3), 617–630 (2003)

    Article  MATH  Google Scholar 

  16. Jiang, I.G., Yeh, L.C.: The drag-induced resonant capture for Kuiper belt objects. Mon. Not. R. Astron. Soc. 355, L29–L32 (2004a)

    Article  Google Scholar 

  17. Jiang, I.G., Yeh, L.C.: On the chaotic orbits of disk-star-planet systems. Astron. J. 128, 923–932 (2004b)

    Article  Google Scholar 

  18. Kalas, P., Fitzgerald, M.P., Graham, J.R.: Discovery of Extreme asymmetry in the debris disk surrounding HD 15115. Astrophys. J. 661, L85–L88 (2007)

    Article  Google Scholar 

  19. Khanna, M., Bhatnagar, K.B.: Existence and stability of libration points in the restricted three body problem when the smaller primary is a triaxial rigid body and the bigger one an oblate sheriods. Indian J. Pure Appl. Math. 30(7), 721–733 (1999)

    MATH  Google Scholar 

  20. Magueijo, J., Mozaffari, A.: Case for testing modified Newtonian dynamics using LISA pathfinder. Phys. Rev. D 85(4), 43527 (2012)

    Article  Google Scholar 

  21. Miyamoto, M., Nagai, R.: Three-dimensional models for the distribution of mass in galaxies. Publ. Astron. Soc. Jpn. 27, 533–543 (1975)

    Google Scholar 

  22. Poynting, J.H.: Radiation in the solar system: its effect on temperature and its pressure on small bodies. Philos. Trans. R. Soc. Lond. 202, 525–552 (1903)

    Article  MATH  Google Scholar 

  23. Radzievskii, V.V.: The restricted problem of three-body taking account of light pressure. Astron. J. Zh 27, 250–256 (1950)

    Google Scholar 

  24. Renzetti, G.: Exact geodetic precession of the orbit of a two-body gyroscope in geodesic motion about a third mass. Earth Moon Planets 109(1–4), 55–59 (2012)

    Article  MATH  Google Scholar 

  25. Renzetti, G.: Satellite orbital precessions caused by the octupolar mass moment of a non-spherical body arbitrarily oriented in space. J. Astrophys. Astron. 34(4), 341–348 (2013)

    Article  Google Scholar 

  26. Renzetti, G.: Satellite orbital precessions caused by the first odd zonal \(\text{ J }_{3}\) multipole of a non-spherical body arbitrarily oriented in space. Astrophys. Space Sci. 352(2), 493–496 (2014)

    Article  Google Scholar 

  27. Rozelot, J.P., Damiani, C.: History of solar oblateness measurements and interpretation. Eur. Phys. J. H 36(3), 407–436 (2011)

    Article  Google Scholar 

  28. Sharma, R.K., Taqvi, Z.A., Bhatnagar, K.B.: Existence and stability of libration points in the restricted three body problem when the bigger primary is a triaxial rigid body and source of radiation. Indian J. Pure Appl. Math. 32(2), 255–266 (2001)

    MathSciNet  MATH  Google Scholar 

  29. Sharma, R.K., Taqvi, Z.A., Bhatnagar, K.B.: Existence and stability of libration points in the restricted three body problem when the primaries are triaxial rigid bodies. Celest. Mech. Dyn. Astron. 79(2), 119–133 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  30. Sharma, R.K., Taqvi, Z.A., Bhatnagar, K.B.: Existence and stability of libration points in the restricted three body problem when the primaries are triaxial rigid bodies and source of radiations. Indian J. Pure Appl. Math. 32(7), 981–994 (2001)

    MathSciNet  MATH  Google Scholar 

  31. Schnittman, J.D.: The Lagrange equilibrium points \(\text{ L }_{4}\) and \(\text{ L }_{5}\) in black hole binary system. Astrophys. J. 724(1), 39–48 (2010)

    Article  Google Scholar 

  32. Singh, J.: The equilibrium points in the perturbed R3BP with triaxial and luminous primaries. Astrophys. Space Sci. 346, 41–50 (2013)

    Article  MATH  Google Scholar 

  33. Singh, J., Begha, J.M.: Stability of equilibrium points in the generalized perturbed restricted three-body problem. Astrophys. Space Sci. 331, 511–519 (2011)

    Article  MATH  Google Scholar 

  34. Singh, J., Taura, J.J.: Motion in the generalized restricted three-body problem. Astrophys. Space Sci. 343(1), 95–106 (2013)

    Article  MATH  Google Scholar 

  35. Singh, J., Taura, J.J.: Effects of zonal harmonics and a circular cluster of material points on the stability of triangular equilibrium points in the R3BP. Astrophys. Space Sci. 350(1), 127–132 (2014)

    Article  Google Scholar 

  36. Singh, J., Taura, J.J.: Combined effect of oblateness, radiation and a circular cluster of material points on the stability of triangular libration points in the R3BP. Astrophys. Space Sci. 351(2), 499–506 (2014)

    Article  Google Scholar 

  37. Singh, J., Taura, J.J.: Stability of triangular equilibrium points in the photogravitational restricted three-body problem with oblateness and potential from a belt. J. Astrophys. Astron. 35, 107–119 (2014)

    Article  Google Scholar 

  38. Szebehely, V.: Theory of Orbits: The Restricted Problem of Three Bodies. Academic Press, New York (1967)

    MATH  Google Scholar 

  39. Trilling, D.E., Stansberry’, J.A., Stapelfeldt, K.R., Rieke, G.H., Su, K.Y.L., Gray, R.O., Corbally, C.J., Bryden, G., Chen, C.H., Boden, A., Beichman, C.A.: Debris disks in main-sequence binary systems. Astrophys. J. 658, 1289–1311 (2007)

    Article  Google Scholar 

  40. Yeh, L.C., Jiang, I.G.: On the Chermnykh-like problems: II. The equilibrium points. Astrophys. Space Sci. 306, 189–200 (2006)

    Article  MATH  Google Scholar 

  41. Zhao, H., Li, B., Bienaymé, O.: Modified Kepler’s law, escape speed and two-body problem in MOND-like theories. Phys. Rev. D 82(10), 103001 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joel John Taura.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, J., Taura, J.J. Triangular Libration Points in the CR3BP with Radiation, Triaxiality and Potential from a Belt. Differ Equ Dyn Syst 25, 385–396 (2017). https://doi.org/10.1007/s12591-015-0243-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12591-015-0243-0

Keywords

Navigation