Skip to main content
Log in

Mathematical Analysis of a Nonlinear Model of Soil Carbon Dynamics

  • Original Research
  • Published:
Differential Equations and Dynamical Systems Aims and scope Submit manuscript

Abstract

MOMOS model (Modelling Organic changes by Micro-Organisms of Soil) is a nonlinear system of ordinary differential equations, which models the dynamics of carbon in soil. This “compartmental” model emphasizes the role of the microbial biomass which is responsible for the model nonlinearity. We show here that, for any initial condition, there exists a global unique solution. Moreover if we assume periodicity of model entries we prove existence and uniqueness of a periodic solution which is also a global attractor for any other solution of this periodic system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ciais, P., Sabin, C., Bala, G., Bopp, L., Brovkin, V., Canadell, J., Chhabra, A., DeFries, R., Galloway, J., Heimann, M., Jones, C., Le Qur, C., Myneni, R.B., Piao, S., Thornton, P.: Carbon and other biogeochemical cycles. In: Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M. (eds.) The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, pp. 465–570. Cambridge University Press, Cambridge (2013)

    Google Scholar 

  2. Le Quéré, C., Andres, R.J., Boden, T., Conway, T., Houghton, R.A., House, J.I., Marland, G., Peters, G.P., van der Werf, G.R., Ahlstrom, A., Andrew, R.M., Bopp, L., Canadell, J.G., Ciais, P., Doney, S.C., Enright, C., Friedlingstein, P., Huntingford, C., Jain, A.K., Jourdain, C., Kato, E., Keeling, R.F., Klein Goldewijk, K., Levis, S., Levy, P., Lomas, M., Poulter, B., Raupach, M.R., Schwinger, J., Sitch, S., Stocker, B.D., Viovy, N., Zaehle, S., Zeng, N.: The global carbon budget 19592011. Earth Syst. Sci. Data (2013), doi:10.5194/essd-5-165-2013

  3. Lal, R.: Carbon sequestration. Philos. Trans. R. Soc. B (2008). doi:10.1098/rstb.2007.2185

  4. Feller, C., Blanchart, E., Bernoux, M., Lal, R., Manlay, R.: Soil fertility concepts over the past two centuries: The importance attributed to soil organic matter in developed and developing countries. Arch. Agron. Soil Sci. (2012). doi:10.1080/03650340.2012.693598

  5. Battle-Aguilar, J., Brovelli, A., Porporato, A., Brarry, D.A.: Modelling soil carbon and nitrogen cycles during land use change. A review. Agron. Sustain. Dev. (2011). doi:10.1051/agro/2010007

  6. Hamdi, S., Chevallier, T., Ben Assa, N., Ben Hammouda, M., Gallali, T., Chotte, J.L., Bernoux, M.: Short-term temperature dependence of heterotrophic soil respiration after one-month of pre-incubation at different temperatures. Soil Biol. Biochem. (2011). doi:10.1016/j.soilbio.2010.05.025

  7. Manzoni, S., Porporato, A.: Soil carbon and nitrogen mineralization: theory and models across scales. Soil Biol. Biochem. 41, 1355–1379 (2009)

    Article  Google Scholar 

  8. Jacquez, J.A., Simon, C.P.: Qualitative theory of compartmental systems. SIAM Rev. 35, 43–79 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  9. Sandberg, I.W.: On the mathematical foundations of compartmental analysis in biology, medicine, and ecology. IEEE Trans. Circuits Syst. 25, 273–279 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hamdi, S., Moyano, F., Sall, S., Bernoux, M., Chevallier, T.: Synthesis analysis of the temperature sensitivity of soil respiration from laboratory studies in relation to incubation methods and soil conditions. Soil Biol. Biochem. (2013). doi:10.1016/j.soilbio.2012.11.012

  11. Cerri, C.E.P., Easter, M., Paustian, K., Killian, K., Coleman, K., Bernoux, M., Falloon, P., Powlson, D.S., Batjes, N.H., Milne, E., Cerri, C.C.: Simulating SOC changes in 11 land use change chronosequences from the Brazilian Amazon with RothC and century models. Agric. Ecosyst. Environ. (2007). doi:10.1016/j.agee.2007.01.007

  12. Wieder, W.R., Bonan, G.B., Allison, S.D.: Global soil carbon projections are improved by modelling microbial processes. Nature Clim. Chang. (2013). doi:10.1038/nclimate1951

  13. Pansu, M., Sarmiento, L., Rujano, M.A. Ablan, M., Acevedo, D., Bottner, P.: Modeling organic transformations by microorganisms of soils in six contrasting ecosystems: validation of the MOMOS model. Glob. Biogeochem. Cycles, 24, GB1008 (2010). doi:10.1029/2009GB003527

  14. Pansu, M., Bottner, P., Sarmiento, L., Metselaar, K.: Comparison of five soil organic matter decomposition models using data from a \(^{14}\)C and \(^{15}\)N labeling field experiment. Glob. Biogeochem. Cycles 18, 1–11 (2004)

    Article  Google Scholar 

  15. Pansu, M., Sarmiento, L., Metselaar, K., Herve, D., Bottner, P.: Modelling the transformations and sequestration of soil organic matter in two contrasting ecosystems of the Andes. Eur. J. Soil Sci. (2007). doi:10.1111/j.1365-2389.2006.00867.x

  16. Pansu, M., Machado, D., Bottner, P., Sarmiento, L.: Modelling microbial exchanges between forms of soil nitrogen in contrasting ecosystems. Biogeoscience (2014). doi:10.5194/bg-11-915-2014

    MATH  Google Scholar 

  17. Smith, H.L.: Monotone Dynamical Systems, An Introduction to the Theory of Competitive and Cooperative Systems. American Mathematical Society, Providence (1995)

    MATH  Google Scholar 

  18. Hairer, E., Norsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I. Nonstiff Problems. Springer, Berlin (2008)

    Google Scholar 

  19. Teschl, G.: Ordinary Differential Equations and Dynamical Systems, Graduate Studies in Mathematics. American Mathematical Society, Providence (2012)

    Google Scholar 

  20. Ortega, J.M.: Numerical Analysis: A Second Course. SIAM, Philadelphia (1990)

    Book  MATH  Google Scholar 

  21. Martin, M.P., Cordier, S., Balesdent, J., Arrouays, D.: Periodic solutions for soil carbon dynamics equilibriums with time-varying forcing variables. Ecol. Model. 204, 523–530 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

This research is financially supported by the laboratories of excellence (LabEx) NUMEV (solutions Numériques, Matricielles et Modélisation pour l’Environnement et le Vivant) and the LabEx CEMEB (Centre Méditerranéen de l’Environnement et de la Biodiversité). Acknowledgements are also extended to the Ecoles doctorales SIBAGHE and I2S of Montpellier.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oana Iosifescu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hammoudi, A., Iosifescu, O. & Bernoux, M. Mathematical Analysis of a Nonlinear Model of Soil Carbon Dynamics. Differ Equ Dyn Syst 23, 453–466 (2015). https://doi.org/10.1007/s12591-014-0227-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12591-014-0227-5

Keywords

Mathematics Subject Classification

Navigation