Skip to main content
Log in

System of First Order Linear Homogeneous Differential Equations (FLHE) and Riccati Equation

  • Original Research
  • Published:
Differential Equations and Dynamical Systems Aims and scope Submit manuscript

Abstract

We present a simple method of solving a system of two first order linear homogeneous differential equations with variable co-efficients and demonstrate a correspondence of the system of equations with non-linear Riccati equation. By using appropriate substitution, this non-linear equation is converted into second order linear homogeneous differential equation, the solution of which is used to find the solution of the system of equations. It is seen that different sets of the variable co-efficients of the system of equations correspond to second order linear homogeneous differential equations of different nature. We have illustrated the method with one example. We have shown that the method can be applied to obtain the approximate analytical solutions of the spin dependent coupled Altarelli–Parisi evolution equation in Quantum Chromo Dynamics under plausible conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Simmons G.F.: Differential Equations. Tata McGraw-Hill, New Delhi (1979)

    Google Scholar 

  2. Goldberg J., Potter M.C.: Differential Equations (A system approach). Prentice Hall, Upper Saddle River, p. 07458

  3. Derrick W.R., Grossman S.I.: Elementary Differential Equations. 4nd edn. Addison-Wesley, Boston (1996)

    Google Scholar 

  4. Rainville E.D., Bedient P.E.: Elementary Differential Equations. 7nd edn. Macmillan Publishing Company, New York (1989)

    Google Scholar 

  5. O’Connor, J.J., Robertson, E.F.: Jacopo Francesco Riccati. http://www-history.mcs.st-andrews.ac.uk/Biographies/Riccati.html (1996)

  6. Fraga, E.S.: The Schrodinger and Riccati Equations, vol. 70. Lecture Notes in Chemistry. Springer, Berlin (1999)

  7. Schwabl F.: Quantum Mechanics. Springer, Berlin (1992)

    Google Scholar 

  8. Shankar R.: Principles of Quantum Mechanics. Plenum, New York (1980)

    Google Scholar 

  9. Khare A., Sukhatme U.: Supersymmetry in Quantum Mechanics. World Scientific, Singapore (2001)

    MATH  Google Scholar 

  10. Atre, R., Panigrahi, P.K., Agarwal, G.S.: Class of Solitary wave solutions of the one-dimensional Gross-Pitaevskii equation, Phys. Rev. E (3) 73(5), 056611, 5 pp (2006)

    Google Scholar 

  11. Yang Q., Zhang H.J.: Matter-Wave Soliton solutions in Bose-Einstein condensates with arbitrary time varying scattering length in a time-dependent harmonic trap. Chin. J. Phys. 46, 457–459 (2008)

    Google Scholar 

  12. Abbas S., Bahuguna D.: Existence of solutions to quasilinear functional differential equations. Electron. J. Differ. Equ. 2009(164), 1–8 (2009)

    MathSciNet  Google Scholar 

  13. Davis H.: Introduction to Nonlinear Differential and Integral Equations. Courier Dover Publications, New York (1962)

    MATH  Google Scholar 

  14. Ince E.L.: Ordinary Differential Equations. Dover Publications, New York (1956)

    Google Scholar 

  15. Polyanin A.D., Zaitsev V.F.: Handbook of Exact Solutions for Ordinary Differential Equations. 2nd edn. Chapman and Hall/ CRC, Boca Raton (2003)

    MATH  Google Scholar 

  16. Reid W.T.: Riccati Differential Equations. Academic Press, New York (1972)

    MATH  Google Scholar 

  17. Zwillinger D.: Handbook of Differential Equations. Academic Press, Boston (1989)

    MATH  Google Scholar 

  18. Bastami A.Al, Belic M.R., Petrovic N. Z.: Special solutions of the Riccati equation with applications to the Gross-Pitaevskii nonlinear PDE. Electron. J. Differ. Equ. 2010(66), 1-10 (2010).

  19. Altarelli G., Parisi G.: Asyptotic freedom in parton language. Nucl. Phys. B 126, 298 (1977)

    Article  Google Scholar 

  20. Altarelli G.: Partons in quantum chromodynamics. Phys. Rep. 81C, 1 (1982)

    Article  Google Scholar 

  21. Halzen F., Martin A.D.: Quarks and Leptons. Wiley, New York (1984)

    Google Scholar 

  22. Gehrmann T., Stirling W.J.: Analytic approach to the evolution of polarised parton distributions at small x. Phys. Lett. B 365, 347–358 (1996)

    Article  Google Scholar 

  23. Collins P.D.B.: An introduction to Regge theory and high energy physics. Cambridge University Press, Cambridge (1977)

    Book  Google Scholar 

  24. Donnachie A., Landshoff P.V.: Perturbative QCD and Regge theory: closing the circle. Phys. Lett. B 533, 277 (2002)

    Article  Google Scholar 

  25. Donnachie A., Landshoff P.V.: The proton’s gluon distribution. Phys. Lett. B 550, 160 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranjit Choudhury.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choudhury, D.K., Choudhury, R. System of First Order Linear Homogeneous Differential Equations (FLHE) and Riccati Equation. Differ Equ Dyn Syst 20, 127–137 (2012). https://doi.org/10.1007/s12591-012-0109-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12591-012-0109-7

Keywords

Navigation