Skip to main content
Log in

Exercise echocardiography for structural heart disease

  • Review Article
  • Published:
Journal of Echocardiography Aims and scope Submit manuscript

Abstract

Since the introduction of transcatheter structural heart intervention, the term “structural heart disease” has been widely used in the field of cardiology. Structural heart disease refers to congenital heart disease, valvular heart disease, and cardiomyopathy. In structural heart disease, valvular heart disease is frequently identified in the elderly. Of note, the number of patients who suffer from aortic stenosis (AS) and mitral regurgitation (MR) is increasing in developed countries because of the aging of the populations. Transcatheter aortic valve replacement and percutaneous mitral valve repair has been widely used for AS and MR, individually. Echocardiography is the gold standard modality for initial diagnosis and subsequent evaluation of AS and MR, although the difficulties in assessing patients with these diseases still remain. Here, we review the clinical usefulness and prognostic impact of exercise echocardiography on structural heart disease, particularly on AS and MR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Nkomo VT, Gardin JM, Skelton TN, et al. Burden of valvular heart diseases: a population-based study. Lancet. 2006;368:1005–11.

    Article  PubMed  Google Scholar 

  2. Carabello BA, Paulus WJ. Aortic stenosis. Lancet. 2009;373:956–66.

    Article  PubMed  Google Scholar 

  3. Vahanian A, Alfieri O, Andreotti F, et al. Guidelines on the management of valvular heart disease (version 2012). Eur Heart J. 2012;33:2451–96.

    Article  PubMed  Google Scholar 

  4. Nishimura RA, Otto CM, Bonow RO, et al. 2014 AHA/ACC Guideline for the management of patients with valvular heart disease: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation. 2014;129:2440–92.

    Article  PubMed  Google Scholar 

  5. Lancellotti P, Donal E, Magne J, et al. Risk stratification in asymptomatic moderate to severe aortic stenosis: the importance of the valvular, arterial and ventricular interplay. Heart. 2010;96:1364–71.

    Article  PubMed  Google Scholar 

  6. Rafique AM, Biner S, Ray I, et al. Meta-analysis of prognostic value of stress testing in patients with asymptomatic severe aortic stenosis. Am J Cardiol. 2009;104:972–7.

    Article  PubMed  Google Scholar 

  7. Izumo M, Lancellotti P, Suzuki K, et al. Three-dimensional echocardiographic assessments of exercise-induced changes in left ventricular shape and dyssynchrony in patients with dynamic functional mitral regurgitation. Eur J Echocardiogr. 2009;10:961–7.

    Article  PubMed  Google Scholar 

  8. Izumo M, Suzuki K, Moonen M, et al. Changes in mitral regurgitation and left ventricular geometry during exercise affect exercise capacity in patients with systolic heart failure. Eur J Echocardiogr. 2011;12:54–60.

    Article  PubMed  Google Scholar 

  9. Kou S, Suzuki K, Akashi YJ, et al. Global longitudinal strain by two-dimensional speckle tracking imaging predicts exercise capacity in patients with chronic heart failure. J Echocardiogr. 2011;9:64–72.

    Article  Google Scholar 

  10. Mizukoshi K, Suzuki K, Yoneyama K, et al. Early diastolic function during exertion influences exercise intolerance in patients with hypertrophic cardiomyopathy. J Echocardiogr. 2013;11:9–17.

    Article  Google Scholar 

  11. Suzuki K, Izumo M, Yoneyama K, et al. Influence of exercise-induced pulmonary hypertension on exercise capacity in asymptomatic degenerative mitral regurgitation. J Cardiol. 2015;66:246–52.

    Article  PubMed  Google Scholar 

  12. Suzuki K, Izumo M, Kamijima R, et al. Influence of pulmonary vascular reserve on exercise-induced pulmonary hypertension in patients with systemic sclerosis. Echocardiography. 2015;32:428–35.

    Article  PubMed  Google Scholar 

  13. Maréchaux S, Hachicha Z, Bellouin A, et al. Usefulness of exercise-stress echocardiography for risk stratification of true asymptomatic patients with aortic valve stenosis. Eur Heart J. 2010;31:1390–7.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Maréchaux S, Ennezat PV, LeJemtel TH, et al. Left ventricular response to exercise in aortic stenosis: an exercise echocardiographic study. Echocardiography. 2007;24:955–9.

    Article  PubMed  Google Scholar 

  15. Amato MC, Moffa PJ, Werner KE, et al. Treatment decision in asymptomatic aortic valve stenosis: role of exercise testing. Heart. 2001;86:381–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Alborino D, Hoffmann JL, Fournet PC, et al. Value of exercise testing to evaluate the indication for surgery in asymptomatic patients with valvular aortic stenosis. J Heart Valve Dis. 2002;11:204–9.

    PubMed  Google Scholar 

  17. Das P, Rimington H, Chambers J. Exercise testing to stratify risk in aortic stenosis. Eur Heart J. 2005;26:1309–13.

    Article  PubMed  Google Scholar 

  18. Lancellotti P, Lebois F, Simon M, et al. Prognostic importance of quantitative exercise Doppler echocardiography in asymptomatic valvular aortic stenosis. Circulation. 2005;112:I377–82.

    PubMed  Google Scholar 

  19. Donal E, Thebault C, O’Connor K, et al. Impact of aortic stenosis on longitudinal myocardial deformation during exercise. Eur J Echocardiogr. 2011;12:235–41.

    Article  PubMed  Google Scholar 

  20. Van Pelt NC, Stewart RA, Legget ME, et al. Longitudinal left ventricular contractile dysfunction after exercise in aortic stenosis. Heart. 2007;93:732–8.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Cooper R, Ghali J, Simmons BE, et al. Elevated pulmonary artery pressure. An independent predictor of mortality. Chest. 1991;99:112–20.

    Article  CAS  PubMed  Google Scholar 

  22. Copeland JG, Griepp RB, Stinson EB, et al. Long-term follow-up after isolated aortic valve replacement. J Thorac Cardiovasc Surg. 1977;74:875–89.

    CAS  PubMed  Google Scholar 

  23. Rodés-Cabau J, Webb JG, Cheung A, et al. Transcatheter aortic valve implantation for the treatment of severe symptomatic aortic stenosis in patients at very high or prohibitive surgical risk: acute and late outcomes of the multicenter Canadian experience. J Am Coll Cardiol. 2010;55:1080–90.

    Article  PubMed  Google Scholar 

  24. Lancellotti P, Magne J, Donal E, et al. Determinants and prognostic significance of exercise pulmonary hypertension in asymptomatic severe aortic stenosis. Circulation. 2012;126:851–9.

    Article  PubMed  Google Scholar 

  25. Enriquez-Sarano M, Avierinos JF, Messika-Zeitoun D, et al. Quantitative determinants of the outcome of asymptomatic mitral regurgitation. N Engl J Med. 2005;352:875–83.

    Article  CAS  PubMed  Google Scholar 

  26. Suri RM, Vanoverschelde JL, Grigioni F, et al. Association between early surgical intervention vs watchful waiting and outcomes for mitral regurgitation due to flail mitral valve leaflets. JAMA. 2013;310:609–16.

    Article  CAS  PubMed  Google Scholar 

  27. Kang DH, Kim JH, Rim JH, et al. Comparison of early surgery versus conventional treatment in asymptomatic severe mitral regurgitation. Circulation. 2009;119:797–804.

    Article  PubMed  Google Scholar 

  28. Bach DS, Awais M, Gurm HS, et al. Failure of guideline adherence for intervention in patients with severe mitral regurgitation. J Am Coll Cardiol. 2009;54:860–5.

    Article  PubMed  Google Scholar 

  29. Messika-Zeitoun D, Johnson BD, Nkomo V, et al. Cardiopulmonary exercise testing determination of functional capacity in mitral regurgitation: physiologic and outcome implications. J Am Coll Cardiol. 2006;47:2521–7.

    Article  PubMed  Google Scholar 

  30. Magne J, Lancellotti P, Piérard LA. Exercise-induced changes in degenerative mitral regurgitation. J Am Coll Cardiol. 2010;56:300–9.

    Article  PubMed  Google Scholar 

  31. Stoddard MF, Prince CR, Dillon S, et al. Exercise-induced mitral regurgitation is a predictor of morbid events in subjects with mitral valve prolapse. J Am Coll Cardiol. 1995;25:693–9.

    Article  CAS  PubMed  Google Scholar 

  32. Magne J, Lancellotti P, Piérard LA. Exercise pulmonary hypertension in asymptomatic degenerative mitral regurgitation. Circulation. 2010;122:33–41.

    Article  PubMed  Google Scholar 

  33. Schiros CG, Dell’Italia LJ, Gladden JD, et al. Magnetic resonance imaging with 3-dimensional analysis of left ventricular remodeling in isolated mitral regurgitation: implications beyond dimensions. Circulation. 2012;125:2334–42.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Madaric J, Watripont P, Bartunek J, et al. Effect of mitral valve repair on exercise tolerance in asymptomatic patients with organic mitral regurgitation. Am Heart J. 2007;154:180–5.

    Article  PubMed  Google Scholar 

  35. Lee R, Haluska B, Leung DY, et al. Functional and prognostic implications of LV contractile reserve in patients with asymptomatic severe mitral regurgitation. Heart. 2005;91:1407–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lancellotti P, Cosyns B, Zacharakis D, et al. Importance of left ventricular longitudinal function and functional reserve in patients with degenerative mitral regurgitation: assessment by two-dimensional speckle tracking. J Am Soc Echocardiogr. 2008;21:1331–6.

    Article  PubMed  Google Scholar 

  37. Donal E, Mascle S, Brunet A, et al. Prediction of left ventricular ejection fraction 6 months after surgical correction of organic mitral regurgitation: the value of exercise echocardiography and deformation imaging. Eur Heart J Cardiovasc Imaging. 2012;13:922–30.

    Article  PubMed  Google Scholar 

  38. Kusunose K, Popović ZB, Motoki H, et al. Prognostic significance of exercise-induced right ventricular dysfunction in asymptomatic degenerative mitral regurgitation. Circ Cardiovasc Imaging. 2013;6:167–76.

    Article  PubMed  Google Scholar 

  39. Magne J, Mahjoub H, Dulgheru R, et al. Left ventricular contractile reserve in asymptomatic primary mitral regurgitation. Eur Heart J. 2014;35:1608–16.

    Article  CAS  PubMed  Google Scholar 

  40. Tcheng JE, Jackman JD Jr, Nelson CL, et al. Outcome of patients sustaining acute ischemic mitral regurgitation during myocardial infarction. Ann Intern Med. 1992;117:18.

    Article  CAS  PubMed  Google Scholar 

  41. Lehmann KG, Francis CK, Dodge HT. Mitral regurgitation in early myocardial infarction: Incidence, 154 Y. Otsuji et al. clinical detection, and prognostic implications. Ann Intern Med. 1992;117:10.

    Article  CAS  PubMed  Google Scholar 

  42. Lamas GA, Mitchell GF, Flaker GC, et al. Clinical significance of mitral regurgitation after acute myocardial infarction. Survival and ventricular enlargement investigators. Circulation. 1997;96:827.

    Article  CAS  PubMed  Google Scholar 

  43. Grigioni F, Enriquez-Sarano M, Zehr KJ, et al. Ischemic mitral regurgitation: long-term outcome and prognostic implications with quantitative Doppler assessment. Circulation. 2001;103:1759.

    Article  CAS  PubMed  Google Scholar 

  44. Kisanuki A, Otsuji Y, Kuroiwa R, et al. Two-dimensional echocardiographic assessment of papillary muscle contractility in patients with prior myocardial infarction. J Am Coll Cardiol. 1993;21:932–8.

    Article  CAS  PubMed  Google Scholar 

  45. Lancellotti P, Gérard PL, Piérard LA. Long-term outcome of patients with heart failure and dynamic functional mitral regurgitation. Eur Heart J. 2005;26:1528–32.

    Article  PubMed  Google Scholar 

  46. Piérard LA, Lancellotti P. Stress testing in valve disease. Heart. 2007;93:766–72.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Lancellotti P, Troisfontaines P, Toussaint AC, et al. Prognostic importance of exercise-induced changes in mitral regurgitation in patients with chronic ischemic left ventricular dysfunction. Circulation. 2003;108:1713–7.

    Article  PubMed  Google Scholar 

  48. Lancellotti P, Lebrun F, Piérard LA. Determinants of exercise-induced changes in mitral regurgitation in patients with coronary artery disease and left ventricular dysfunction. J Am Coll Cardiol. 2003;42:1921–8.

    Article  PubMed  Google Scholar 

  49. Lancellotti P, Gérard PL, Piérard LA. Long-term outcome of patients with heart failure and dynamic functional mitral regurgitation. Eur Heart J. 2005;26:1528–32.

    Article  PubMed  Google Scholar 

  50. Maréchaux S, Neicu DV, Braun S, et al. Functional mitral regurgitation: a link to pulmonary hypertension in heart failure with preserved ejection fraction. J Card Fail. 2011;17:806–12.

    Article  PubMed  Google Scholar 

  51. Miller WL, Mahoney DW, Enriquez-Sarano M. Quantitative Doppler-echocardiographic imaging and clinical outcomes with left ventricular systolic dysfunction: independent effect of pulmonary hypertension. Circ Cardiovasc Imaging. 2014;7:330–6.

    Article  CAS  PubMed  Google Scholar 

  52. Lancellotti P, Magne J, Dulgheru R, et al. Clinical significance of exercise pulmonary hypertension in secondary mitral regurgitation. Am J Cardiol. 2015;115:1454–61.

    Article  PubMed  Google Scholar 

  53. Giga V, Ostojic M, Vujisic-Tesic B, et al. Exercise-induced changes in mitral regurgitation in patients with prior myocardial infarction and left ventricular dysfunction: relation to mitral deformation and left ventricular function and shape. Eur Heart J. 2005;26:1860–5.

    Article  PubMed  Google Scholar 

  54. Magne J, Pibarot P, Sengupta PP, et al. Pulmonary hypertension in valvular disease: a comprehensive review on pathophysiology to therapy from the HAVEC group. JACC Cardiovasc Imaging. 2015;8:83–99.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaki Izumo.

Ethics declarations

Conflict of interest

Masaki Izumo and Yoshihiro J Akashi declare that they have no conflicts of interest to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Izumo, M., Akashi, Y.J. Exercise echocardiography for structural heart disease. J Echocardiogr 14, 21–29 (2016). https://doi.org/10.1007/s12574-016-0274-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12574-016-0274-8

Keywords

Navigation