Skip to main content
Log in

Thin glass shells for active optics for future space telescopes

  • Original Paper
  • Published:
CEAS Space Journal Aims and scope Submit manuscript

Abstract

We present a method for the manufacturing of thin shells of glass, which appears promising for the development of active optics for future space telescopes. The method exploits the synergy of different mature technologies, and leverages the commercial availability of large, high-quality sheets of glass, with thickness up to few millimeters. The first step of the method foresees the pre-shaping of flat substrates of glass by replicating the accurate shape of a mold via direct hot slumping technology. The replication concept is advantageous for making large optics composed of many identical or similar segments. After the hot slumping, the shape error residual on the optical surface is addressed by applying a deterministic sub-aperture technology as computer-controlled bonnet polishing and/or ion beam figuring. Here we focus on the bonnet polishing case, during which the thin, deformable substrate of glass is temporarily stiffened by a removable holder. In this paper, we report on the results so far achieved on a 130 mm glass shell case study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lillie, C.F.: Large deployable telescopes for future space observatories. Proc. SPIE 5899, 58990D (2005)

    Article  Google Scholar 

  2. Matthews, G.W., Egerman, R., Maffett, S.P., Stahl, H.P., Eng, R., Effinger, M.R.: The development of stacked core technology for the fabrication of deep lightweight UV-quality space mirrors. Proc. SPIE 9143, 91431U (2014)

    Article  Google Scholar 

  3. Burge, J.H., Peper, T., Jacobs, S.F.: Thermal expansion of borosilicate glass, zerodur, zerodur m, and unceramized zerodur at low temperatures. Appl. Opt. 38, 7161 (1999)

    Article  Google Scholar 

  4. Lee, N.N., Burdick, J.W., Backes, P., Pellegrino, S., Hogstrom, K., Fuller, C., Kennedy, B., Kim, J., Mukherjee, R., Seubert, C., Wu, Y.-H.: Architecture for in-space robotic assembly of a modular space telescope. J. Astron. Telesc. Instrum. Syst. 2(4), 041207 (2016)

    Article  Google Scholar 

  5. Burge, J.H., Cuerden, B., Miller, S., Crawford, B., Dorth, H., Sandler, D., Wortley, R.: Manufacture of a 2-m mirror with glass membrane facesheet and active rigid support. Proc. SPIE 3782, 123–133 (1999)

    Article  Google Scholar 

  6. Baiocchi, D., Burge, J.H., Cuerden, B.: Demonstration of a 0.5-m ultralightweight mirror for use at geosynchronous orbit. Proc. SPIE 4451, 86–95 (2001)

    Article  Google Scholar 

  7. Briguglio, R., Biasi, R., Gallieni, D., Vettore, C., d’Amato, F., Xompero, M., et al.: Laboratory demonstration of a primary active mirror for space with the LATT: large aperture telescope technology. Proc. SPIE 9904, 99046C (2016)

    Article  Google Scholar 

  8. Hallibert, P., Zuccaro Marchi, A.: Developments in active optics for space instruments: an ESA perspective. Proc. SPIE 9912, 99121H (2016)

    Article  Google Scholar 

  9. Madec, P.-Y.: Overview of deformable mirror technologies for adaptive optics and astronomy. Proc. SPIE 8447, 844705 (2012)

    Article  Google Scholar 

  10. Hugot, E., Ferrari, M., Riccardi, A., Xompero, M., Lemaître, G.R., Arsenault, R., Hubin, N.: Stress polishing of thin shells for adaptive secondary mirrors. A&A 527, A4 (2011)

    Article  Google Scholar 

  11. Martin, H.M., Burge, J.H., Del Vecchio, C., Dettmann, L.R., Miller, S.M., Smith, B., Wildi, F.: Optical fabrication of the MMT adaptive secondary mirror. Proc. SPIE 4007, 502–507 (2000)

    Article  Google Scholar 

  12. Miller, S.M., Angel, J.R.P., Martin, H.M., Kapp, J., Ketelsen, D.A., Dettmann, L.R.: Fabrication of ultrathin mirrors for adaptive and space optics. Proc. SPIE 3126, 391–396 (1997)

    Article  Google Scholar 

  13. Poutriquet, F., Rinchet, A., Carel, J.-L., Leplan, H., Ruch, E., Geyl, R., Marque, G.: Manufacturing of glassy thin shell for adaptive optics: results achieved. Proc. SPIE 8447, 84472H (2012)

    Article  Google Scholar 

  14. Briguglio, R., Xompero, M., Riccardi, A., Lisi, F., et al.: Development of Large Aperture Telescope Technology (LATT): test results on a demonstrator bread-board. Proc. SPIE 10563, 105634F (2017)

    Google Scholar 

  15. Egerman, R., De Smitt, S., Strafford, D.: Low-weight, low-cost, low-cycle time, replicated glass mirrors. Proc. SPIE 7739, 77390G (2010)

    Article  Google Scholar 

  16. Hickey, G., Barbee, T., Ealey, M., Redding, D.: Actuated hybrid mirrors for space telescopes. Proc. SPIE 7731, 773120 (2010)

    Article  Google Scholar 

  17. Salmaso, B., Basso, S., Civitani, M., Ghigo, M., Hołyszko, J., Spiga, D., Vecchi, G., Pareschi, G.: Fused silica segments: a possible solution for x-ray telescopes with very high angular resolution like Lynx/XRS. Proc. SPIE 10399, 103990X (2017)

    Google Scholar 

  18. Vecchi, G., Basso, S., Canestrari, R., Civitani, M., Ghigo, M., Hołyszko, J., Pareschi, G., Salmaso, B.: A novel approach for the realization of thin glass substrates for optical mirrors. Proc. SPIE 10706, 107060H (2018)

    Google Scholar 

  19. Ghigo, M., Basso, S., Citterio, O., Mazzoleni, F., Vernani, D.: Manufacturing of lightweight glass segments for adaptive optics. Proc. SPIE 6272, 62720X (2006)

    Article  Google Scholar 

  20. Riccardi, A.: Optical figuring specifications for thin shells to be used in adaptive telescope mirrors. Proc. SPIE 6272, 627250 (2006)

    Article  Google Scholar 

  21. Ghigo, M., Basso, S., Canestrari, R., Proserpio, L.: Development of hot slumping technique and last optical performances obtained on a 500 mm diameter slumped segment prototype for adaptive optics. Proc. SPIE 7439, 74390M (2009)

    Article  Google Scholar 

  22. Canestrari, R., Ghigo, M., Pareschi, G., Basso, S., Proserpio, L.: Investigation of a novel slumping technique for the manufacturing of stiff and lightweight optical mirrors. Proc. SPIE 7018, 70180D (2008)

    Article  Google Scholar 

  23. Civitani, M., Ghigo, M., Hołyszko, J., Vecchi, G., Basso, S., Cotroneo, V., DeRoo, C.T., Schwartz, E.D., Reid, P.B.: Advancements in ion beam figuring of very thin glass plates. Proc. SPIE 10399, 103991E (2017)

    Google Scholar 

  24. Walker, D.D., Beaucamp, A.T.H., Doubrovski, V., Dunn, C., Evans, R., Freeman, R., et al.: Automated optical fabrication: first results from the new “Precessions” 1.2 m CNC polishing machine. Proc. SPIE 6273, 627309 (2006)

    Article  Google Scholar 

  25. Vecchi, G., Basso, S., Civitani, M., Ghigo, M., Pareschi, G., Riva, M., Zerbi, F.M.: A bonnet and fluid jet polishing facility for optics fabrication related to the E-ELT. Mem. S.A.It. 86, 408 (2015)

    Google Scholar 

  26. Walker, D.D., Brooks, D., King, A., Freeman, R., Morton, R., McCavana, G., Kim, S.-W.: The ‘Precessions’ tooling for polishing and figuring flat, spherical and aspheric surfaces. Opt. Express 11, 958–964 (2003)

    Article  Google Scholar 

  27. Allen, L.N., Keim, R.E.: An ion figuring system for large optic fabrication. Proc. SPIE 1168, 33–50 (1989)

    Article  Google Scholar 

  28. Geyl, R., Rinchet, A., Rolland, E.: Large optics ion figuring. Proc. SPIE 3739, 161–166 (1999)

    Article  Google Scholar 

  29. Ghigo, M., Vecchi, G., Basso, S., Citterio, O., Civitani, M., Mattaini, E., Pareschi, G., Sironi, G.: Ion figuring of large prototype mirror segments for the E-ELT. Proc. SPIE 9151, 91510Q (2014)

    Article  Google Scholar 

  30. Parks, R.E.: MicroFinish topographer: surface finish metrology for large and small optics. Proc. SPIE 8126, 81260D (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Vecchi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vecchi, G., Basso, S., Civitani, M. et al. Thin glass shells for active optics for future space telescopes. CEAS Space J 11, 533–541 (2019). https://doi.org/10.1007/s12567-019-00259-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12567-019-00259-7

Keywords

Navigation