Skip to main content
Log in

Validation of the kω turbulence model for the thermal boundary layer profile of effusive cooled walls

  • Original Paper
  • Published:
CEAS Space Journal Aims and scope Submit manuscript

Abstract

The choice of materials for rocket chamber walls is limited by its thermal resistance. The thermal loads can be reduced substantially by the blowing out of gases through a porous surface. The kω-based turbulence models for computational fluid dynamic simulations are designed for smooth, non-permeable walls and have to be adjusted to account for the influence of injected fluids. Wilcox proposed therefore an extension for the kω turbulence model for the correct prediction of turbulent boundary layer velocity profiles. In this study, this extension is validated against experimental thermal boundary layer data from the Thermosciences Division of the Department of Mechanical Engineering from the Stanford University. All simulations are performed with a finite volume-based in-house code of the German Aerospace Center. Several simulations with different blowing settings were conducted and discussed in comparison to the results of the original model and in comparison to an additional roughness implementation. This study has permitted to understand that velocity profile corrections are necessary in contrast to additional roughness corrections to predict the correct thermal boundary layer profile of effusive cooled walls. Finally, this approach is applied to a two-dimensional simulation of an effusive cooled rocket chamber wall.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

AS:

Institut für Aerodynamik und Strömungstechnik (engl. Institute of Aerodynamics and Flow Technology)

CEA:

Chemical equilibrium with applications

CFD:

Computational fluid dynamic

CMC:

Ceramic matrix composite

DLR:

German aerospace center

KSK:

Keramische Schub-Kammer (engl. ceramic thrust chamber)

NASA:

National Aeronautics and Space Administration

TAU:

In-house CFD code of the DLR

A :

Thermal diffusivity (m2/s)

c p :

Constant heat capacity at constant pressure

F :

Blowing ratio (–)

k :

Turbulent kinetic energy (kg/m)

\(k_{r}^{ + }\) :

Nondimensional roughness (–)

O/F:

Oxidant-to-fuel mixture ratio (–)

Pr:

Prandtl number

Pr t :

Turbulent Prandtl number

\(\dot{q}_{w}\) :

Surface heat flux (W/m2)

Re :

Reynolds number (–)

Re:

Roughness Reynolds number (–)

S B :

Blowing parameter (–)

St:

Stanton number (–)

St r :

Roughness Stanton number (–)

T :

Temperature (K)

t + :

Nondimensional temperature (K)

t w :

Surface temperature (K)

u :

Velocity (m/s)

\(u^{ + }\) :

Nondimensional velocity (–)

\(u_{\tau }\) :

Friction velocity at the wall (m/s)

v w :

Average normal flow velocity (m/s)

\(v_{w}^{ + }\) :

Nondimensional average normal flow velocity (–)

y :

Wall distance (m)

\(y^{ + }\) :

Nondimensional wall distance (–)

κ :

Von Kármán constant (–)

\(\lambda\) :

Thermal conductivity (W/m K)

\(\mu\) :

Dynamic viscosity (kg/m s)

\(\mu_{t}\) :

Turbulent dynamic viscosity (kg/m s)

v :

Kinematic viscosity (m/s)

\(\rho\) :

Density (kg/m3)

\(\tau\) :

Shear stress (N/m2)

\(\omega\) :

Specific dissipation rate (1/s)

References

  1. Institute of aerodynamics and flow technology, Technical Documentation of the DLR TAU-Code, Documentation of Release 2013.1.0, Braunschweig (2013)

  2. Herbertz, A.: Numerische Leistungsanalyse von Triebwerksauslegung mit transpirativ gekühlter keramischer Raketenbrennkammer, Deutsche Gesellschaft für Luft- und Raumfahrt Jahrbuch 2003, München (2003)

  3. Hald, H., Ortelt, M., Fischer, I., Greuel, D., Haidn, O.: Effusion cooled CMC rocket combustion chamber. 13th AIAA/CIRA International Space Planes and Hypersonic Systems and Technologies Conference, Capua (2005)

    Book  Google Scholar 

  4. Langener, T.: A contribution to transpiration cooling of aerospace applications using CMC walls, Institute of aerospace thermodynamics. University of Stuttgart, Stuttgart (2011)

    Google Scholar 

  5. Hannemann, V.: Numerical investigation of an effusion cooled thermal protection material. ICCFD4, Ghent (2006)

    Google Scholar 

  6. Hink, R. Hannemann, V., Eggers, T.: Extension of the Spalart-Allmaras one-equation turbulence model for effusion cooling problems, Deutscher Luft- und Raumfahrtkongress 2013, Stuttgart (2013)

  7. Wilcox, D.C., Kays, W.M., Moffat, R.J.: Turbulence modeling for CFD -, 2nd edn. DCW Industries, La Cañada (1998)

    Google Scholar 

  8. Moffat, R.J.: The turbulent boundary layer on a porous plate: experimental heat transfer with uniform blowing and suction. Department of Mechanical Engineering, Stanford University, California (1967)

    Google Scholar 

  9. Eckert, E.R.G., Livingood, J.N.B.: Report 1182—comparison of effectiveness of convection-, transpiration- and film-cooling methods with air as coolant. Lewis Flight Propulsion Laboratory, National Advisory Committee for Aeronautics, Cleveland (1953)

    Google Scholar 

  10. Viskanta, R., Younis, L.B.: Experimental determination of the volumetric heat transfer coefficient between stream of air and ceramic foam. Int. J. Heat Mass Transf. 36(6), 1425–1434 (1993)

    Article  Google Scholar 

  11. Woodruff, L.W., Lorenz, G.C.: Hypersonic turbulent transpiration cooling including downstream effects. AIAA J. 4(6), 969–975 (1966)

    Article  Google Scholar 

  12. Bouchez, M., Beyer, S.: PTAH-SOCAR fuel-cooled composite material structure. Proceedings of the 15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, Dayton (Ohio), AIAA 2008-2626 (2008)

  13. Krenkel, W.: Entwicklung eines kostengünstigen Verfahrens zur Herstellung von Bauteilen aus keramischen Verbundwerkstoffen. Dissertation, DLR(German Aerospace Center)-Forschungsbericht 2000-04, Stuttgart (2000)

  14. Rannie, W.: A simplified theory of porous wall cooling. Technical Report, Jet Propulsion Laboratory, Pasadena (1947)

    Google Scholar 

  15. Rubesin, M.W.: An analytical estimation of the effect of transpiration cooling on the heat-transfer and skin-friction characteristics of a compressible, turbulent boundary layer. National Advisory Committee for Aeronautics, Washington, DC (1954)

    Google Scholar 

  16. Kays, W.M.: Convective heat and mass transfer. McGraw-Hill Book Company, New York (1966)

    Google Scholar 

  17. Mickley, H.A., Ross, R.C., Squyers, A.L., Stewart, W.E.: Heat, mass and momentum transfer for flow over a flat plate with blowing or suction. National Advisory Committee for Aeronautics, Washington (1954)

    Google Scholar 

  18. Spalding, D.B.: A standard formulation of the steady convective mass transfer problem. Int. J. Heat Mass Transf. 1, 192–207 (1960)

    Article  MATH  Google Scholar 

  19. Wilcox, D.C.: Turbulence modeling for CFD -, 3rd edn. DCW Industries, La Cañada (2006)

    Google Scholar 

  20. Andersen, P. S., Kays, W. M., Moffat, R. J.: The turbulent boundary layer on a porous plate, Report No. HMT-15, Thermosciences Division, Department of Mechanical Engineering, Stanford University, Stanford, California (1972)

  21. Kays, W. M., Crawford, M. E., Weigand, B.: Convective heat and mass transfer, 4th edition, McGraw-Hill (2005)

  22. Dipprey, D.F., Sabersky, R.H.: Heat and momentum transfer in smooth and rough tubes at various Prandtl numbers. Int. J. Heat Mass Transf. 6(5), 329–353 (1963)

    Article  Google Scholar 

  23. Calvo, J. B.: Numerical simulation of liquid rocket engine cooling channels. Department de Mecànica de Fluids, Universitat Politècninca de Catalunya, Deutsches Zentrum für Luft- und Raumfahrt, Institute of Aerodynamics and Flow Technology, Braunschweig (2010)

    Google Scholar 

  24. Hermann, M.: Numerische Mathematik, Cap. 9.1.5, 2nd edn. Oldenbourg Wissenschaftsverlag, München (2006)

  25. McBride, B.J., Gordon, S.: Computer program for calculation of complex chemical equilibrium compositions and applications II. User’s Manual and Program Description, National Aeronautics and Space Administration, Lewis Research Center, Cleveland (1996)

    Google Scholar 

  26. Gaffney, R. L., White, J. A., Girimaji, S. S., Drummond, J. P.: Modeling Turbulent chemistry interactions using assumed PDF methods. In: AIAA 92-3638, 28th Joint Propulsion Conference and Exhibit, Nashville (1992)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Hink.

Additional information

This paper is based on a presentation at the German Aerospace Congress, September 16–18, 2014, Augsburg, Germany.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hink, R. Validation of the kω turbulence model for the thermal boundary layer profile of effusive cooled walls. CEAS Space J 7, 389–398 (2015). https://doi.org/10.1007/s12567-015-0089-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12567-015-0089-x

Keywords

Navigation