Skip to main content
Log in

Differences in osteon structure histomorphometry between puppyhood and adult stages in the Golden Retriever

  • Original Article
  • Published:
Anatomical Science International Aims and scope Submit manuscript

Abstract

Osteon structure has been widely studied in mammals, but osteon structure in dogs has received relatively little attention, especially in terms of whether aging has any effect on osteon structure. The aim of this study was to compare the osteon structure of both flat (scapula and os coxae) and long bones (humerus, radius, ulna, metacarpus, femur and tibia) of male puppy and adult Golden Retrievers. We examined five parameters: Haversian canal diameter, Haversian canal area, osteon diameter, osteon area, and number of lacunae per osteon. Our results show that the values for Haversian canal diameter were significantly higher in the os coxae and tibia, but significantly lower in the femur of adult dogs as compared to those of puppies. The Haversian canal diameter of the other bones investigated did not show any significant differences between puppies and adult dogs. The Haversian canal area was significantly greater in the os coxae, radius and femur of adult dogs than in those of puppies. The osteon diameter and area of every bone examined were significantly smaller in puppies than in adult dogs. Lastly, the number of lacunae per osteon showed the same trend as osteon diameter and area. Plexiform bone could be found in three bones in puppies, i.e. the femur, humerus and tibia. Overall, the results of this study should provide basic knowledge on the microanatomy of cortical bone in dogs and on the possible influence age.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Britz HM, Thomas CDL, Clement JG, Cooper DML (2009) The relation of femoral osteon geometry to age, sex, height and weight. Bone 45:77–83. doi:10.1016/j.bone.2009.03.654

    Article  PubMed  Google Scholar 

  • Caccia G, Magli F, Tagi VM et al (2016) Histological determination of the human origin from dry bone: a cautionary note for subadults. Int J Legal Med 130:299–307. doi:10.1007/s00414-015-1271-6

    Article  PubMed  Google Scholar 

  • Cattaneo C, Porta D, Gibelli D, Gamba C (2009) Histological determination of the human origin of bone fragments. J Forensic Sci 54:531–533. doi:10.1111/j.1556-4029.2009.01000.x

    Article  PubMed  Google Scholar 

  • Chan AHW, Crowder CM, Rogers TL (2007) Variation in cortical bone histology within the human femur and its impact on estimating age at death. Am J Phys Anthropol 132:80–88. doi:10.1002/ajpa.20465

    Article  PubMed  Google Scholar 

  • Crescimanno A, Stout SD (2012) Differentiating fragmented human and nonhuman long bone using osteon circularity. J Forensic Sci 57:287–294

    Article  PubMed  Google Scholar 

  • Currey JD (1960) Differences in the blood-supply of bone of different histological types. Q J Microsc Sci 101:351–370

    Google Scholar 

  • Currey JD (1964) Some effects of ageing in human Haversian systems. J Anat 98:69–75

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dammers K (2006) Using osteohistology for ageing and sexing. In: Ruscillo D (ed) Recent advances in ageing and sexing animal bones. In: Proc 9th ICAZ Conference. Oxbow, Oxford, pp 9–39

    Google Scholar 

  • Dominguez VM, Crowder CM (2012) The utility of osteon shape and circularity for differentiating human and non-human Haversian bone. Am J Phys Anthropol 149:84–91

    Article  PubMed  Google Scholar 

  • Havill LM (2004) Osteon remodeling dynamics in Macaca mulatta: normal variation with regard to age, sex, and skeletal maturity. Calcif Tissue Int 74:95–102. doi:10.1007/s00223-003-9038-3

    Article  CAS  PubMed  Google Scholar 

  • Hidaka S, Matsumoto M, Ohsako S, Toyoshima Y, Nishinakagawa H (1998) A histometrical study on the long bones of raccoon dogs, Nyctereutes procyonoides and badgers, Meles meles. J Vet Med Sci 60:323–326

    Article  CAS  PubMed  Google Scholar 

  • Hillier ML, Bell LS (2007) Differentiating human bone from animal bone: a review of histological methods. J Forensic Sci 52:249–263. doi:10.1111/j.1556-4029.2006.00368.x

    Article  PubMed  Google Scholar 

  • Jee WS, Bartley MJ, Cooper R, Dockum N (1970) Bone structure. In: Andersen AC (ed) The beagle as an experimental dog. Iowa State University Press, Ames, pp 162–188

    Google Scholar 

  • Jowsey J (1966) Studies of Haversian systems in man and some animals. J Anat 100:857–864

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim HK, Shiraj S, Anton C, Horn PS (2014) The patellofemoral joint: do age and gender affect skeletal maturation of the osseous morphology in children? Pediatr Radiol 44:141–148. doi:10.1007/s00247-013-2790-2

    Article  PubMed  Google Scholar 

  • Manilay Z, Novitskaya E, Sadovnikov E, McKittrick J (2013) A comparative study of young and mature bovine cortical bone. Acta Biomater 9:5280–5288. doi:10.1016/j.actbio.2012.08.040

    Article  CAS  PubMed  Google Scholar 

  • Martiniaková M, Omelka R, Chrenek P, Vondráková M, Bauerová M (2005) Age-related changes in histological structure of the femur in juvenile and adult rabbits: a pilot study. Bull Vet Inst Pulawy 49:227–230

    Google Scholar 

  • Martiniaková M, Omelka R, Ryban L, Grosskopf B, Vondráková M, Bauerová M, Fabis M, Chrenek P et al (2006) Comparative study of compact bone tissue microstructure between non-transgenic and transgenic rabbits with WAP-hFVIII gene construct. Anat Histol Embryol 35:310–315. doi:10.1111/j.1439-0264.2006.00690.x

    Article  PubMed  Google Scholar 

  • Morales-Avalos R, Leyva-Villegas J, Sánchez-Mejorada G et al (2014) Age- and gender-related variations in morphometric characteristics of thoracic spine pedicle: a study of 4,800 pedicles. Clin Anat 27:441–450. doi:10.1002/ca.22359

    Article  PubMed  Google Scholar 

  • Mori R, Kodaka T, Sano T, Yamagishi N, Asari M, Naito Y (2003) Comparative histology of the laminar bone between young calves and foals. Cells Tissues Organs 175:43–50

    Article  CAS  PubMed  Google Scholar 

  • Mori R, Kodaka T, Soeta S et al (2005) Preliminary study of histological comparison on the growth patterns of long-bone cortex in young calf, pig, and sheep. J Vet Med Sci 67:1223–1229

    Article  PubMed  Google Scholar 

  • Mulhern DM, Ubelaker DH (2003) Histologic examination of bone development in juvenile chimpanzees. Am J Phys Anthropol 122:127–133

    Article  PubMed  Google Scholar 

  • Nganvongpanit K, Phatsara M, Settakorn J, Mahakkanukrauh P (2015) Differences in compact bone tissue microscopic structure between adult humans (Homo sapiens) and Assam macaques (Macaca assamensis). Forensic Sci Int 254:e1–e5. doi:10.1016/j.forsciint.2015.06.018

    Article  Google Scholar 

  • Parenteau CS, Wang NC, Zhang P, Caird MS, Wang SC (2014) Quantification of pediatric and adult cervical vertebra—anatomical characteristics by age and gender for automotive application. Traffic Inj Prev 15:572–582. doi:10.1080/15389588.2013.843774

    Article  PubMed  Google Scholar 

  • Singh IJ, Gunberg DL (1971) Quantitative histology of changes with age in rat bone cortex. J Morphol 133:241–251. doi:10.1002/jmor.1051330208

    Article  CAS  PubMed  Google Scholar 

  • Skedros JG, Hunt KJ, Hughes PE, Winet H (2003) Ontogenetic and regional morphologic variations in the turkey ulna diaphysis: implications for functional adaptation of cortical bone. Anat Rec A Discov Mol Cell Evol Biol 273:609–629

    Article  PubMed  Google Scholar 

  • Skedros JG, Knight AN, Clark GC et al (2013) Scaling of Haversian canal surface area to secondary osteon bone volume in ribs and limb bones. Am J Phys Anthropol 151:230–244. doi:10.1002/ajpa.22270

    Article  PubMed  Google Scholar 

  • Streeter M (2012) The determination of age in subadult from the rib cortical microstructure. Methods Mol Biol 915:101–108. doi:10.1007/978-1-61779-977-8_6

    Article  PubMed  Google Scholar 

  • Thompson DD (1980) Age changes in bone mineralization, cortical thickness, and Haversian canal area. Calcif Tissue Int 31:5–11. doi:10.1007/BF02407161

    Article  CAS  PubMed  Google Scholar 

  • Whitman EJ (2004) Differentiating between human and non-human secondary osteons in human, canine, and bovine rib tissue. Masters thesis.small breed dogs. Masters thesis. Michigan State University, East Lansing

  • Zedda M, Lepore G, Biggio GP, Gadau S, Mura E, Farina V (2015) Morphology, morphometry and spatial distribution of secondary osteons in equine femur. Anat Histol Embryol 44:328–332. doi:10.1111/ahe.12141

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the Animal Anatomy Museum, Department of Veterinary Biosciences and Public Health, Faculty of Veterinary Medicine, Chiang Mai University, for supplying bones. The authors are also grateful for research funding from Chiang Mai University (CMU) provided to the Excellence Center in Osteology Research and Training Center (ORTC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Korakot Nganvongpanit.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nganvongpanit, K., Pradit, W., Pitakarnnop, T. et al. Differences in osteon structure histomorphometry between puppyhood and adult stages in the Golden Retriever. Anat Sci Int 92, 483–492 (2017). https://doi.org/10.1007/s12565-016-0345-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12565-016-0345-y

Keywords

Navigation