Skip to main content
Log in

Penalized Variable Selection for Multi-center Competing Risks Data

  • Published:
Statistics in Biosciences Aims and scope Submit manuscript

Abstract

We consider variable selection in competing risks regression for multi-center data. Our research is motivated by deceased donor kidney transplants, from which recipients would experience graft failure, death with functioning graft (DWFG), or graft survival. The occurrence of DWFG precludes graft failure from happening and therefore is a competing risk. Data within a transplant center may be correlated due to a latent center effect, such as varying patient populations, surgical techniques, and patient management. The proportional subdistribution hazard (PSH) model has been frequently used in the regression analysis of competing risks data. Two of its extensions, the stratified and the marginal PSH models, can be applied to multi-center data to account for the center effect. In this paper, we propose penalization strategies for the two models, primarily to select important variables and estimate their effects whereas correlations within centers serve as a nuisance. Simulations demonstrate good performance and computational efficiency for the proposed methods. It is further assessed using an analysis of data from the United Network of Organ Sharing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Christian NJ, Ha ID, Jeong JH (2016) Hierarchical likelihood inference on clustered competing risks data. Stat Med 35(2):251–267

    Article  MathSciNet  Google Scholar 

  2. Evans RW, Manninen DL, Dong F (1991) The center effect in kidney transplantation. Transpl Proc 23(1 Pt 2):1315–1317

    Google Scholar 

  3. Fan J, Li R (2001) Variable selection via nonconcave penalized likelihood and its oracle properties. J Am Stat Assoc 96(456):1348–1360

    Article  MathSciNet  MATH  Google Scholar 

  4. Fan J, Li R (2002) Variable selection for cox proportional hazards model and frailty model. Ann Stat 30(1):74–99

    Article  MathSciNet  MATH  Google Scholar 

  5. Fan J, Lv J (2010) A selective overview of variable selection in high dimensional feature space. Stat Sin 20(1):101–148

    MathSciNet  MATH  Google Scholar 

  6. Fibrinogen Studies (2009) C.: Measures to assess the prognostic ability of the stratified cox proportional hazards model. Stat Med 28(3):389–411

    Article  MathSciNet  Google Scholar 

  7. Fine JP, Gray RJ (1999) A proportional hazards model for the subdistribution of a competing risk. J Am Stat Assoc 94(446):496–509

    Article  MathSciNet  MATH  Google Scholar 

  8. Friedman J, Hastie T, Tibshirani R (2010) Regularization paths for generalized linear models via coordinate descent. J Stat Softw 33(1):1–22

    Article  Google Scholar 

  9. Fu Z, Parikh CR, Zhou B (2016) Penalized variable selection in competing risks regression. Lifetime Data Anal 26:1–24

  10. Glidden DV, Vittinghoff E (2004) Modelling clustered survival data from multicentre clinical trials. Stat Med 23(3):369–388

    Article  Google Scholar 

  11. Ha ID, Christian NJ, Jeong JH, Park J, Lee Y (2014) Analysis of clustered competing risks data using subdistribution hazard models with multivariate frailties. Stat Methods Med Res. doi:10.1177/0962280214526193

  12. Ha ID, Lee M, Oh S, Jeong JH, Sylvester R, Lee Y (2014) Variable selection in subdistribution hazard frailty models with competing risks data. Stat Med 33(26):4590–4604

    Article  MathSciNet  Google Scholar 

  13. Hastie T, Tibshirani R (1999) Generalized additive models. Chapman & Hall/CRC, Boca Raton

    MATH  Google Scholar 

  14. Hunter DR, Li RZ (2005) Variable selection using mm algorithms. Ann Stat 33(4):1617–1642

    Article  MathSciNet  MATH  Google Scholar 

  15. Katsahian S, Resche-Rigon M, Chevret S, Porcher R (2006) Analysing multicentre competing risks data with a mixed proportional hazards model for the subdistribution. Stat Med 25(24):4267–4278

    Article  MathSciNet  Google Scholar 

  16. Kim SJ, Schaubel DE, Jeffery JR, Fenton SS (2004) Centre-specific variation in renal transplant outcomes in Canada. Nephrol Dial Transpl 19(7):1856–1861

    Article  Google Scholar 

  17. Kuk D, Varadhan R (2013) Model selection in competing risks regression. Stat Med 32(18):3077–3088

    Article  MathSciNet  Google Scholar 

  18. Lee Y, Nelder JA (2004) Conditional and marginal models: another view. Stat Sci 19(2):219–228

    Article  MathSciNet  MATH  Google Scholar 

  19. Lee EW, Wei LJ, Amato DA, Leurgans S (1992) Cox-type regression analysis for large numbers of small groups of correlated failure time observations. In: Survival analysis: state of the art. Springer, Berlin, p 237–247

  20. Logan BR, Zhang MJ, Klein JP (2011) Marginal models for clustered time-to-event data with competing risks using pseudovalues. Biometrics 67(1):1–7

    Article  MathSciNet  MATH  Google Scholar 

  21. Morales JM, Campistol JM, Domnguez-Gil B, Andrs A, Esforzado N, Oppenheimer F, Castellano G, Fuertes A, Bruguera M, Praga M (2010) Long-term experience with kidney transplantation from hepatitis c-positive donors into hepatitis c-positive recipients. Am J Transpl 10(11):2453–2462

    Article  Google Scholar 

  22. OPTN (2015) National data. http://optn.transplant.hrsa.gov/converge/latestData/rptData.asp. Accessed 1 Oct 2015

  23. OPTN/SRTR (2011) 2011 annual report of the US organ procurement and transplantation network and the scientific registry of transplant recipients. Report, Department of Health and Human Services, Health Resources and Services Administration, Healthcare Systems Bureau, Division of Transplantation, Rockville; United Network for Organ Sharing, Richmond; University Renal Research and Education Association, Ann Arbor

  24. O’Quigley J, Stare J (2002) Proportional hazards models with frailties and random effects. Stat Med 21(21):3219–3233

    Article  Google Scholar 

  25. Port FK, Bragg-Gresham JL, Metzger RA, Dykstra DM, Gillespie BW, Young EW, Delmonico FL, Wynn JJ, Merion RM, Wolfe RA, Held PJ (2002) Donor characteristics associated with reduced graft survival: an approach to expanding the pool of kidney donors. Transplantation 74(9):1281–1286

    Article  Google Scholar 

  26. Prentice RL, Cai JW (1992) Marginal and conditional models for the analysis of multivariate failure time data. Surviv Anal State Art 211:393–406

    Article  MATH  Google Scholar 

  27. Rao PS, Schaubel DE, Guidinger MK, Andreoni KA, Wolfe RA, Merion RM, Port FK, Sung RS (2009) A comprehensive risk quantification score for deceased donor kidneys: the kidney donor risk index. Transplantation 88(2):231–236

    Article  Google Scholar 

  28. Robins JM, Rotnitzky A (1992) Recovery of information and adjustment for dependent censoring using surrogate markers AIDS epidemiology. Springer, Berlin, pp 297–331

    Google Scholar 

  29. Roodnat JI, Mulder PG, Van Riemsdijk IC, Ijzermans JN, van Gelder T, Weimar W (2003) Ischemia times and donor serum creatinine in relation to renal graft failure. Transplantation 75(6):799–804

    Article  Google Scholar 

  30. Royston P, Sauerbrei W (2004) A new measure of prognostic separation in survival data. Stat Med 23(5):723–748

    Article  Google Scholar 

  31. Schoop R, Beyersmann J, Schumacher M, Binder H (2011) Quantifying the predictive accuracy of time-to-event models in the presence of competing risks. Biometrical J 53(1):88–112

    Article  MathSciNet  MATH  Google Scholar 

  32. Simon N, Friedman J, Hastie T, Tibshirani R (2011) Regularization paths for cox proportional hazards model via coordinate descent. J Stat Softw 39(5):1–13

    Article  Google Scholar 

  33. Snoeijs MG, Winkens B, Heemskerk MB, Hoitsma AJ, Christiaans MH, Buurman WA, van Heurn LW (2010) Kidney transplantation from donors after cardiac death: a 25-year experience. Transplantation 90(10):1106–1112

    Article  Google Scholar 

  34. Taylor RM, Ting A, Briggs JD (1985) Renal transplantation in the united kingdom and ireland-the centre effect. Lancet 1(8432):798–803

    Article  Google Scholar 

  35. Therneau TM, Grambsch PM (2000) Modeling survival data: extending the Cox model. Springer Science & Business Media, Berlin

    Book  MATH  Google Scholar 

  36. Tibshirani R (1996) Regression shrinkage and selection via the lasso. J R Stat Soc Ser B Methodol 58(1):267–288

    MathSciNet  MATH  Google Scholar 

  37. Tibshirani R (1997) The lasso method for variable selection in the cox model. Stat Med 16(4):385–395

    Article  Google Scholar 

  38. Wang H, Li R, Tsai CL (2007) Tuning parameter selectors for the smoothly clipped absolute deviation method. Biometrika 94(3):553–568

    Article  MathSciNet  MATH  Google Scholar 

  39. Weber M, Dindo D, Demartines N, Ambhl PM, Clavien PA (2002) Kidney transplantation from donors without a heartbeat. N Engl J Med 347(4):248–255

    Article  Google Scholar 

  40. Wei LJ, Lin DY, Weissfeld L (1989) Regression-analysis of multivariate incomplete failure time data by modeling marginal distributions. J Am Stat Assoc 84(408):1065–1073

    Article  MathSciNet  Google Scholar 

  41. Wolbers M, Koller MT, Witteman JC, Steyerberg EW (2009) Prognostic models with competing risks: methods and application to coronary risk prediction. Epidemiology 20(4):555–561

    Article  Google Scholar 

  42. Zhang CH (2010) Nearly unbiased variable selection under minimax concave penalty. Ann Stat 38(2):894–942

    Article  MathSciNet  MATH  Google Scholar 

  43. Zhang H, Lu W (2007) Adaptive lasso for cox’s proportional hazards model. Biometrika 94(3):691–703

    Article  MathSciNet  MATH  Google Scholar 

  44. Zhou B, Fine J, Latouche A, Labopin M (2012) Competing risks regression for clustered data. Biostatistics 13(3):371–383

    Article  MATH  Google Scholar 

  45. Zhou B, Latouche A, Rocha V, Fine J (2011) Competing risks regression for stratified data. Biometrics 67(2):661–670

    Article  MathSciNet  MATH  Google Scholar 

  46. Zou H (2006) The adaptive lasso and its oracle properties. J Am Stat Assoc 101(476):1418–1429

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

Thank Dr. Schaubel for the invitation of submission. This publication was made possible by CTSA Grant Number UL1 TR000142 from the National Center for Advancing Translational Science (NCATS), a component of the National Institutes of Health (NIH). Its contents are solely the responsibility of the authors and do not necessarily represent the official view of NIH. This work was supported in part by Health Resources and Services Administration contract 234-2005-37011C. The content is the responsibility of the authors alone and does not necessarily reflect the views or policies of the Department of Health and Human Services, nor does mention of trade names, commercial products, or organizations imply endorsement by the US Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bingqing Zhou.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 98 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, Z., Ma, S., Lin, H. et al. Penalized Variable Selection for Multi-center Competing Risks Data. Stat Biosci 9, 379–405 (2017). https://doi.org/10.1007/s12561-016-9181-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12561-016-9181-9

Keywords

Navigation