Skip to main content
Log in

Adaptive Thresholding for Reconstructing Regulatory Networks from Time-Course Gene Expression Data

  • Published:
Statistics in Biosciences Aims and scope Submit manuscript

Abstract

Discovering regulatory interactions from time-course gene expression data constitutes a canonical problem in functional genomics and systems biology. The framework of graphical Granger causality allows one to estimate such causal relationships from these data. In this study, we propose an adaptively thresholding estimates of Granger causal effects obtained from the lasso penalization method. We establish the asymptotic properties of the proposed technique, and discuss the advantages it offers over competing methods, such as the truncating lasso. Its performance and that of its competitors is assessed on a number of simulated settings and it is applied on a data set that captures the activation of T-cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnold A, Liu Y, Abe N (2007) Temporal causal modeling with graphical granger methods. In: Proceedings of the 13th ACM SIGKDD, pp 66–75

    Google Scholar 

  2. Basu S, Shojaie A, Michailidis G (2011) Incorporating group structure in estimation of graphical Granger causality. Tech rep, Department of Statistics, University of Michigan

  3. Bickel P, Ritov Y, Tsybakov A (2009) Simultaneous analysis of lasso and Dantzig selector. Ann Stat 37(4):1705–1732

    Article  MathSciNet  MATH  Google Scholar 

  4. Fujita A, Sato J, Garay-Malpartida H, Yamaguchi R, Miyano S, Sogayar M, Ferreira C (2007) Modeling gene expression regulatory networks with the sparse vector autoregressive model. BMC Syst Biol 1(1):39

    Article  Google Scholar 

  5. Granger C (1969) Investigating causal relations by econometric models and cross-spectral methods. Econometrica, 424–438

  6. Lozano A, Abe N, Liu Y, Rosset S (2009) Grouped graphical Granger modeling for gene expression regulatory networks discovery. Bioinformatics 25(12):i110

    Article  Google Scholar 

  7. Lütkepohl H (2005) New introduction to multiple time series analysis. Springer, Berlin

    MATH  Google Scholar 

  8. Meinshausen N, Yu B (2009) Lasso-type recovery of sparse representations for high-dimensional data. Ann Stat 37(1):246–270

    Article  MathSciNet  MATH  Google Scholar 

  9. Mukhopadhyay N, Chatterjee S (2007) Causality and pathway search in microarray time series experiment. Bioinformatics 23(4):442

    Article  Google Scholar 

  10. Murphy K (2002) Dynamic Bayesian networks: representation, inference and learning. PhD thesis, University of California

  11. Ong I, Glasner J, Page D et al. (2002) Modelling regulatory pathways in E. coli from time series expression profiles. Bioinformatics 18(Suppl 1):S241–S248

    Article  Google Scholar 

  12. Opgen-Rhein R, Strimmer K (2007) Learning causal networks from systems biology time course data: an effective model selection procedure for the vector autoregressive process. BMC Bioinform 8(Suppl 2):S3

    Article  Google Scholar 

  13. Pearl J (2000) Causality: models, reasoning, and inference. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  14. Perrin B, Ralaivola L, Mazurie A, Bottani S, Mallet J, d’Alche Buc F (2003) Gene networks inference using dynamic Bayesian networks. Bioinformatics 19(Suppl 2):138–148

    Article  Google Scholar 

  15. Rangel C, Angus J, Ghahramani Z, Lioumi M, Sotheran E, Gaiba A, Wild D, Falciani F (2004) Modeling t-cell activation using gene expression profiling and state-space models. Bioinformatics 20(9):1361

    Article  Google Scholar 

  16. Raskutti G, Wainwright MJ, Yu B (2010) Restricted eigenvalue properties for correlated Gaussian designs. J Mach Learn Res 11:2241–2259

    MathSciNet  Google Scholar 

  17. Shojaie A, Michailidis G (2010) Discovering graphical Granger causality using the truncating lasso penalty. Bioinformatics 26(18):i517–i523

    Article  Google Scholar 

  18. Shojaie A, Michailidis G (2010) Penalized likelihood methods for estimation of sparse high-dimensional directed acyclic graphs. Biometrika 97(3):519–538

    Article  MathSciNet  MATH  Google Scholar 

  19. van de Geer SA, Bühlmann P (2009) On the conditions used to prove oracle results for the lasso. Electron J Stat 3:1360–1392

    Article  MathSciNet  Google Scholar 

  20. Wasserman L, Roeder K (2009) High dimensional variable selection. Ann Stat 37(5A):2178

    Article  MathSciNet  MATH  Google Scholar 

  21. Yamaguchi R, Yoshida R, Imoto S, Higuchi T, Miyano S (2007) Finding module-based gene networks with state-space models-Mining high-dimensional and short time-course gene expression data. IEEE Signal Process Mag 24(1):37–46

    Article  Google Scholar 

  22. Zhou S (2010) Thresholded lasso for high dimensional variable selection and statistical estimation. Preprint arXiv:1002.1583

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Shojaie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shojaie, A., Basu, S. & Michailidis, G. Adaptive Thresholding for Reconstructing Regulatory Networks from Time-Course Gene Expression Data. Stat Biosci 4, 66–83 (2012). https://doi.org/10.1007/s12561-011-9050-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12561-011-9050-5

Keywords

Navigation