Skip to main content
Log in

Changes in Environmental Conditions Modify Infection Kinetics of Dairy Phages

  • Original Paper
  • Published:
Food and Environmental Virology Aims and scope Submit manuscript

Abstract

Latent period, burst time, and burst size, kinetic parameters of phage infection characteristic of a given phage/host system, have been measured for a wide variety of lactic acid bacteria. However, most studies to date were conducted in optimal growth conditions of host bacteria and did not consider variations due to changes in external factors. In this work, we determined the effect of temperature, pH, and starvation on kinetic parameters of phages infecting Lactobacillus paracasei, Lactobacillus plantarum, and Leuconostoc mesenteroides. For kinetics assessment, one-step growth curves were carried out in MRS broth at optimal conditions (control), lower temperature, pH 6.0 and 5.0 (MRS6 and MRS5, respectively), or in medium lacking carbon (MRSN) or nitrogen (MRSC) sources. Phage infection was progressively impaired as environmental conditions were modified from optimal. At lower temperature or pH, infection was delayed, as perceived by longer latent and burst times. Burst size, however, was lower, equal or higher than for controls, but this effect was highly dependent on the particular phage–host system studied. Phage infection was strongly inhibited in MRSC, but only mildly impaired in MRSN. Nevertheless, growth of all the bacterial strains tested was severely compromised by starvation, without significant differences between MRSC and MRSN, indicating that nitrogen compounds are specifically required for a successful phage infection, beyond their influence on bacterial growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abedon, S. (1989). Selection for bacteriophage latent period length by bacterial density: A theoretical examination. Microbial Ecology, 18(2), 79–88.

    Article  CAS  PubMed  Google Scholar 

  • Arendt, E. K., Lonvaud, A., & Hammes, W. P. (1991). Lysogeny in Leuconostoc oenos. Journal of General Microbiology, 137(9), 2135–2139.

    Article  CAS  PubMed  Google Scholar 

  • Baranyi, J., & Roberts, T. A. (1994). A dynamic approach to predicting bacterial growth in food. International Journal of Food Microbiology, 23(3–4), 277–294.

    Article  CAS  PubMed  Google Scholar 

  • Binetti, A. G., Quiberoni, A., & Reinheimer, J. (2002). Phage adsorption to Streptococcus thermophilus: Influence of environmental factors and characterization of cell receptors. Food Research International, 35, 73–83.

    Article  CAS  Google Scholar 

  • Briggiler Marco, M., Garneau, J. E., Tremblay, D., Quiberoni, A., & Moineau, S. (2012). Characterization of two virulent phages of Lactobacillus plantarum. Applied and Environmental Microbiology, 78(24), 8719–8734.

    Article  PubMed  PubMed Central  Google Scholar 

  • Briggiler Marco, M., Reinheimer, J., & Quiberoni, A. (2015). Phage adsorption and lytic propagation in Lactobacillus plantarum: Could host cell starvation affect them? BMC Microbiology, 15, 273.

    Article  PubMed  PubMed Central  Google Scholar 

  • Briggiler Marcó, M., Reinheimer, J. A., & Quiberoni, A. (2010). Phage adsorption to Lactobacillus plantarum: Influence of physiological and environmental factors. International Journal of Food Microbiology, 138(3), 270–275.

    Article  PubMed  Google Scholar 

  • Capra, M. L., Guglielmotti, D., Reinheimer, J., & Quiberoni, A. (2016). Bacteriophage: Biological aspects. In Reference module in food science. Cambridge: Elsevier.

  • Capra, M. L., Mercanti, D. J., Reinheimer, J. A., & Quiberoni, A. L. (2010). Characterisation of three temperate phages released from the same Lactobacillus paracasei commercial strain. International Journal of Dairy Technology, 63(3), 396–405.

    Article  CAS  Google Scholar 

  • Capra, M. L., Quiberoni, A., Ackermann, H. W., Moineau, S., & Reinheimer, J. A. (2006a). Characterization of a new virulent phage (MLC-A) of Lactobacillus paracasei. Journal of Dairy Science, 89(7), 2414–2423.

    Article  CAS  PubMed  Google Scholar 

  • Capra, M. L., Quiberoni, A., & Reinheimer, J. (2006b). Phages of Lactobacillus casei/paracasei: Response to environmental factors and interaction with collection and commercial strains. Journal of Applied Microbiology, 100(2), 334–342.

    Article  CAS  PubMed  Google Scholar 

  • Caso, J. L., de Los Reyes Gavilan, C., Herrero, M., Montilla, A., Rodriguez, A., & Suarez, J. E. (1995). Isolation and characterization of temperate and virulent bacteriophages of Lactobacillus plantarum. Journal of Dairy Science, 78, 741–750.

    Article  CAS  Google Scholar 

  • De Antoni, G., Zago, M., Vasek, O., Giraffa, G., Carminati, D., Marco, M. B., et al. (2010). Lactobacillus plantarum bacteriophages isolated from Kefir grains: Phenotypic and molecular characterization. Journal of Dairy Research, 77(1), 7–12.

    Article  PubMed  Google Scholar 

  • Golec, P., Karczewska-Golec, J., Los, M., & Wegrzyn, G. (2014). Bacteriophage T4 can produce progeny virions in extremely slowly growing Escherichia coli host: Comparison of a mathematical model with the experimental data. FEMS Microbiology Letters, 351(2), 156–161.

    Article  CAS  PubMed  Google Scholar 

  • Golec, P., Wiczk, A., Los, J., Konopa, G., Wegrzyn, G., & Los, M. (2011). Persistence of bacteriophage T4 in a starved Escherichia coli culture: Evidence for the presence of phage subpopulations. Journal of General Virology, 92, 997–1003.

    Article  CAS  PubMed  Google Scholar 

  • Guglielmotti, D. M., Mercanti, D. J., & Briggiler Marcó, M. (2012). Infective cycle of dairy bacteriophages. In A. Quiberoni & J. A. Reinheimer (Eds.), Bacteriophages in Dairy Processing (pp. 99–122, Advances in Food Safety and Food Microbiology). Hauppauge, New York, USA: Nova Science Publishers.

  • Hemme, D. (2012). Leuconostoc and its use in dairy technology. In Handbook of animal-based fermented food and beverage technology (2nd ed., pp. 73–108). Boca Raton: CRC Press.

  • Lillehaug, D. (1997). An improved plaque assay for poor plaque-producing temperate lactococcal bacteriophages. Journal of Applied Microbiology, 83(1), 85–90.

    Article  CAS  PubMed  Google Scholar 

  • Lu, Z., Breidt, F., Jr., Fleming, H. P., Altermann, E., & Klaenhammer, T. R. (2003). Isolation and characterization of a Lactobacillus plantarum bacteriophage, phiJL-1, from a cucumber fermentation. International Journal of Food Microbiology, 84(2), 225–235.

    Article  CAS  PubMed  Google Scholar 

  • Mercanti, D. J., Ackermann, H. W., & Quiberoni, A. (2015). Characterization of two temperate Lactobacillus paracasei bacteriophages: Morphology, kinetics and adsorption. Intervirology, 58(1), 49–56.

    Article  CAS  PubMed  Google Scholar 

  • Mercanti, D. J., Carminati, D., Reinheimer, J. A., & Quiberoni, A. (2011). Widely distributed lysogeny in probiotic lactobacilli represents a potentially high risk for the fermentative dairy industry. International Journal of Food Microbiology, 144(3), 503–510.

    Article  CAS  PubMed  Google Scholar 

  • Mercanti, D. J., Rousseau, G. M., Capra, M. L., Quiberoni, A., Tremblay, D. M., Labrie, S. J., et al. (2016). Genomic diversity of phages infecting probiotic strains of Lactobacillus paracasei. Applied and Environmental Microbiology, 82(1), 95–105.

    Article  CAS  Google Scholar 

  • Müller-Merbach, M., Kohler, K., & Hinrichs, J. (2007). Environmental factors for phage-induced fermentation problems: Replication and adsorption of the Lactococcus lactis phage P008 as influenced by temperature and pH. Food Microbiology, 24(7–8), 695–702.

    Article  PubMed  Google Scholar 

  • Nes, I. F., Brendehaug, J., & von Husby, K. O. (1988). Characterization of the bacteriophage B2 of Lactobacillus plantarum ATCC 8014. Biochimie, 70(3), 423–427.

    Article  CAS  PubMed  Google Scholar 

  • Nowicki, D., Kobiela, W., WÄ™grzyn, A., WÄ™grzyn, G., & Szalewska-PaÅ‚asz, A. (2013). ppGpp-dependent negative control of DNA replication of Shiga toxin-converting bacteriophages in Escherichia coli. Journal of Bacteriology, 195(22), 5007–5015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Potrykus, K., & Cashel, M. (2008). (p)ppGpp: Still magical? Annual Review of Microbiology, 62, 35–51.

    Article  CAS  PubMed  Google Scholar 

  • Pujato, S. A., Mercanti, D. J., Guglielmotti, D. M., Rousseau, G. M., Moineau, S., Reinheimer, J. A., et al. (2015). Phages of dairy Leuconostoc mesenteroides: Genomics and factors influencing their adsorption. International Journal of Food Microbiology, 201, 58–65.

    Article  CAS  PubMed  Google Scholar 

  • Quiberoni, A., & Reinheimer, J. (1998). Physicochemical characterization of phage adsorption to Lactobacillus helveticus ATCC 15807 cells. Journal of Applied Microbiology, 85, 762–768.

    Article  Google Scholar 

  • Saarela, M., Mogensen, G., Fondén, R., Mättö, J., & Mattila-Sandholm, T. (2000). Probiotic bacteria: Safety, functional and technological properties. Journal of Biotechnology, 84(3), 197–215.

    Article  CAS  PubMed  Google Scholar 

  • Server-Busson, C., Foucaud, C., & Leveau, J.-Y. (1999). Selection of dairy Leuconostoc isolates for important technological properties. Journal of Dairy Research, 66(2), 245–256.

    Article  CAS  Google Scholar 

  • Sozzi, T., Poulin, J. M., Maret, R., & Pousaz, R. (1978). Isolation of a bacteriophage of Leuconostoc mesenteroides from dairy products. Journal of Applied Bacteriology, 44(1), 159–161.

    Article  Google Scholar 

  • Suarez, V., Moineau, S., Reinheimer, J., & Quiberoni, A. (2008). Argentinean Lactococcus lactis bacteriophages: Genetic characterization and adsorption studies. Journal of Applied Microbiology, 104(2), 371–379.

    CAS  PubMed  Google Scholar 

  • Svensson, U., & Christiansson, A. (1991). Methods for phage monitoring. Bulletin—FIL-IDF, 263, 29–39.

    Google Scholar 

  • Trucco, V., Reinheimer, J., Quiberoni, A., & Suarez, V. B. (2011). Adsorption of temperate phages of Lactobacillus delbrueckii strains and phage resistance linked to their cell diversity. Journal of Applied Microbiology, 10(10), 1365–2672.

    Google Scholar 

  • Wang, I.-N., Dykhuizen, D., & Slobodkin, L. (1996). The evolution of phage lysis timing. Evolutionary Ecology, 10(5), 545–558.

    Article  Google Scholar 

  • Zhang, X., Lan, Y., Jiao, W., Li, Y., Tang, L., Jiang, Y., et al. (2015). Isolation and characterization of a novel virulent phage of Lactobacillus casei ATCC 393. Food and Environmental Virology, 7(4), 333–341.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET; Project PIP 112-201201-00046; Argentina) and by the Universidad Nacional del Litoral (UNL; Project CAI+D PI 501-201101-00039; Argentina).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Mercanti.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaburlin, D., Quiberoni, A. & Mercanti, D. Changes in Environmental Conditions Modify Infection Kinetics of Dairy Phages. Food Environ Virol 9, 270–276 (2017). https://doi.org/10.1007/s12560-017-9296-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12560-017-9296-2

Keywords

Navigation