Skip to main content
Log in

Towards a Biologically Inspired Soft Switching Approach for Cloud Resource Provisioning

  • Published:
Cognitive Computation Aims and scope Submit manuscript

Abstract

Cloud elasticity augments applications to dynamically adapt to changes in demand by acquiring or releasing computational resources on the fly. Recently, we developed a framework for cloud elasticity utilizing multiple feedback controllers simultaneously, wherein, each controller determines the scaling action with different intensity, and the selection of an appropriate controller is realized with a fuzzy inference system. In this paper, we aim to identify the similarities between cloud elasticity and action selection mechanism in the animal brain. We treat each controller in our previous framework as an action, and propose a novel bioinspired, soft switching approach. The proposed methodology integrates a basal ganglia computational model as an action selection mechanism. Initial experimental results demonstrate the improved potential of the basal ganglia-based approach by enhancing the overall system performance and stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Al-Shishtawy A, Vladimir, V. ElastMan: autonomic elasticity manager for cloud-based key-value stores. In: 22nd ACM international symposium on high-performance parallel and distributed computing, HPDC 2013, p. 115–116.

  2. Garside J. Amazon’s record $21bn Christmas sales push shares to new high, 2013.

  3. Theguardian. China’s Alibaba records ’singles day’ sales of $8bn in 10 h, 2015.

  4. Jamshidi P, Ahmad A, Pahl C. Autonomic resource provisioning for cloud-based software. In: Proceedings of the 9th international symposium on software engineering for adaptive and self-managing systems, 2014. p. 95–104.

  5. Urdaneta G, Pierre G, van Steen M. Wikipedia workload analysis for decentralized hosting. Comput. Netw. 2009;53:1830–45.

    Article  Google Scholar 

  6. Liu J, Zhang Y, Zhou Y, Zhang D, Liu H. Aggressive resource provisioning for ensuring QoS in virtualized environments. IEEE Trans Cloud Comput. 2014;2(3):119–31.

    Google Scholar 

  7. Herbst NR, Kounev S, Reussner R. Elasticity in cloud computing : what it is, and what it is not. In: 10th International conference on autonomic computing; 2013. p. 23–27.

  8. Ranjan R, Wang L, Zomaya AY, Georgakopoulos D, Sun X-H, Wang G. Recent advances in autonomic provisioning of big data applications on clouds. IEEE Trans Cloud Comput. 2015;3(2):101–4.

    Article  Google Scholar 

  9. Singh S, Chana I. QoS-aware autonomic resource management in cloud computing: a systematic review. ACM Comput Surv (CSUR). 2015;48(3):42.

    Article  Google Scholar 

  10. Ali-Eldin A, Tordsson J, Elmroth E. An adaptive hybrid elasticity controller for cloud infrastructures. In: Network operations and management symposium (NOMS), 2012. p. 204–212.

  11. Lim HC, Babu S, Chase JS, Parekh SS. Automated control in cloud computing: challenges and opportunities. In Proceedings of the 1st workshop on automated control for datacenters and clouds; 2009. p. 13–18.

  12. Ghanbari H, Simmons B, Litoiu M, Iszlai G. Exploring alternative approaches to implement an elasticity policy. In: 2011 IEEE International conference on cloud computing (CLOUD); 2011. p. 716–723.

  13. Lorido-Botran T, Miguel-Alonso J, Lozano JA. A review of auto-scaling techniques for elastic applications in cloud environments. J Grid Comput. 2014;12(4):559–92.

    Article  Google Scholar 

  14. Ullah A, Li J, Hussain A. Towards workload-aware cloud resource provisioning using a novel multi-controller fuzzy switching approach. Int J High Perform Comput Netw. 2015. (in press).

  15. Hellerstein JL, Diao Y, Parekh S, Tilbury DM. Feedback control of computing systems. Hoboken: Wiley; 2004.

    Book  Google Scholar 

  16. Abdullah R, Hussain A, Warwick K, Zayed A. Autonomous intelligent cruise control using a novel multiple-controller framework incorporating fuzzy-logic-based switching and tuning. Neurocomputing. 2008;71(13):2727–41.

    Article  Google Scholar 

  17. Girard B, Tabareau N, Pham Q-C, Berthoz A, Slotine. J-J. Where neuroscience and dynamic system theory meet autonomous robotics: a contracting basal ganglia model for action selection. Neural Netw. 2008;21(4):628–41.

    Article  CAS  PubMed  Google Scholar 

  18. Yang E, Hussain A, Gurney K. A brain-inspired soft switching approach: towards a cognitive cruise control system. In: WIT transactions on engineering sciences, 2014.

  19. Redgrave P, Prescott TJ, Gurney K. The basal ganglia: a vertebrate solution to the selection problem? Neuroscience. 1999;89(4):1009–23.

    Article  CAS  PubMed  Google Scholar 

  20. Prescott TJ, Redgrave P, Gurney K. Layered control architectures in robots and vertebrates. Adapt Behav. 1999;7(1):99–127.

    Article  Google Scholar 

  21. Gurney K, Prescott TJ, Redgrave P. A computational model of action selection in the basal ganglia. I. A new functional anatomy. Biol Cybern. 2001;84(6):401–10.

    Article  CAS  PubMed  Google Scholar 

  22. Gurney K, Prescott TJ, Redgrave P. A computational model of action selection in the basal ganglia. II. Analysis and simulation of behaviour. Biol Cybern. 2001;84(6):411–23.

    Article  CAS  PubMed  Google Scholar 

  23. Yang E, Hussain A, Gurney K. A basal ganglia inspired soft switching approach to the motion control of a car-like autonomous vehicle. Adv Brain Inspir Cogn Syst. 2013;7888:245–54.

    Article  Google Scholar 

  24. Czubenko M, Kowalczuk Z, Ordys A. Autonomous driver based on an intelligent system of decision-making. Cogn Comput. 2015;7:1–13.

    Article  Google Scholar 

  25. Prescott TJ, González FMM, Gurney K, Humphries MD, Redgrave P. A robot model of the basal ganglia: behavior and intrinsic processing. Neural Netw. 2006;19(1):31–61.

    Article  PubMed  Google Scholar 

  26. Cervantes J-A, Rodríguez L-F, López S, Ramos F, Robles F. Autonomous agents and ethical decision-making. Cogn Comput. 2015. doi:10.1007/s12559-015-9362-8.

  27. Girard B, Cuzin V, Guillot A, Gurney KN. A basal ganglia inspired model of action selection evaluated in a robotic survival task. J Integr Neurosci. 2003;2(2):179–200.

    Article  PubMed  Google Scholar 

  28. Rohlfshagen P, Bryson JJ. Flexible latching: a biologically-inspired mechanism for improving the management of homeostatic goals. Cogn Comput. 2010;2(3):230–41.

    Article  Google Scholar 

  29. Coutinho EF, de Carvalho Sousa FR, Rego PAL, Gomes DG, de Souza JN. Elasticity in cloud computing: a survey. Ann Telecomm-Annales Des Télécommunications. 2015;70:1–21.

    Article  Google Scholar 

  30. Amazong. Amazong auto scaling, 2015.

  31. Rightscale. Set up autoscaling using alert escalations, 2015.

  32. Casalicchio E, Silvestri L. Autonomic management of cloud-based systems: the service provider perspective. In: Computer and information sciences III: 27th international symposium on computer and information sciences. London: Springer; 2013. p. 39–47.

    Chapter  Google Scholar 

  33. Hasan MZ, Magana E, Clemm A, Tucker L, Gudreddi SLD. Integrated and autonomic cloud resource scaling. Proceedings of the 2012 IEEE network operations and management symposium, NOMS 2012, p. 1327–1334.

  34. Barrett E, Howley E, Duggan J. Applying reinforcement learning towards automating resource allocation and application scalability in the cloud. Concurr Comput: Pract Exp. 2013;25(12):1656–74.

    Article  Google Scholar 

  35. Bahrpeyma F, Zakerolhoseini A, Haghighi H. Using IDS fitted Q to develop a real-time adaptive controller for dynamic resource provisioning in cloud’s virtualized environment. Appl Soft Comput. 2015;26:285–98.

    Article  Google Scholar 

  36. Lim HC, Babu S, Chase JS. Automated control for elastic storage. In: Proceedings of the 7th international conference on autonomic computing; 2010. p. 1–10.

  37. Al-Shishtawy A, Vlassov V. ElastMan: elasticity manager for elastic Key-Value stores in the cloud. In: Cloud and autonomic computing conference (CAC ’13); 2013. p. 1.

  38. Ali-Eldin A, Kihl M, Tordsson J, Elmroth E. Efficient provisioning of bursty scientific workloads on the cloud using adaptive elasticity control. In: Proceedings of the 3rd workshop on scientific cloud computing date; 2012. p. 31–40.

  39. Patikirikorala T, Colman A, Han J, Wang L. A multi-model framework to implement self-managing control systems for QoS management. In: Proceedings of the 6th international symposium on software engineering for adaptive and self-managing systems; 2011. p. 218–227.

  40. Patikirikorala T, Wang L, Colman A, Han J. HammersteinWiener nonlinear model based predictive control for relative QoS performance and resource management of software systems. Control Eng Pract. 2012;20(1):49–61.

    Article  Google Scholar 

  41. Ali-Eldin A, Tordsson J, Elmroth E, Kihl M. Workload classification for efficient auto-scaling of cloud resources. Department of Computer Science, Umea University, Umea, Technical Report, 2013.

  42. Dan X, Liu X, Vasilakos AV. Traffic-aware resource provisioning for distributed clouds. IEEE Cloud Comput. 2015;2(1):30–9.

    Article  Google Scholar 

  43. Zhang Q, Member S, Zhani MF. Dynamic heterogeneity-aware resource provisioning in the cloud. IEEE Trans Cloud Comput. 2014;2(1):14–28.

    Article  Google Scholar 

  44. Tony Prescott M. Action selection, 2008.

  45. Fix J, Rougier N, Alexandre F. A dynamic neural field approach to the covert and overt deployment of spatial attention. Cogn Comput. 2011;3(1):279–93.

    Article  Google Scholar 

  46. Gurney KN. Reverse engineering the vertebrate brain: methodological principles for a biologically grounded programme of cognitive modelling. Cogn Comput. 2009;1(1):29–41.

    Article  Google Scholar 

  47. Mandali A, Rengaswamy M, Srinivasa Chakravarthy V, Moustafa AA. A spiking basal ganglia model of synchrony, exploration and decision making. Front Neurosci. 2015;9:191.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Redgrave P. Basal ganglia, 2007.

  49. Hussain A, Abdullah R, Yang E, Gurney K. An intelligent multiple-controller framework for the integrated control of autonomous vehicles. In: Advances in brain inspired cognitive systems: 5th international conference, BICS 2012, Shenyang, China, July 11–14, 2012. Berlin, Heidelberg: Springer; 2012. p. 92–101.

  50. Bai Y, Wang D. Fundamentals of fuzzy logic control—fuzzy sets, fuzzy rules and defuzzifications. In: Bai Y, Zhuang H, Wang D, editors. Advanced fuzzy logic technologies in industrial applications, advances in industrial control. London: Springer; 2006. p. 17–36.

    Chapter  Google Scholar 

  51. Lyshevski SE. Control systems theory with engineering applications. New York: Springer; 2012.

    Google Scholar 

  52. Passino KM, Yurkovich S, Reinfrank M. Fuzzy control, vol. 42. CA: Addison-wesley; 1998.

  53. Calheiros RN, Ranjan R, Beloglazov A, De Rose CAF, Buyya R. CloudSim: a toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithms. Softw: Pract Exp. 2011;41(1):23–50.

    Google Scholar 

  54. Cingolani P, Alcala-Fdez J. jFuzzyLogic: a robust and flexible fuzzy-Logic inference system language implementation. In FUZZ-IEEE, Citeseer, 2012. p. 1–8.

  55. Internet traffic Archive. Worldcup 1998 Web trace, 2015.

  56. Network traffic Archive. Nasa-HTTP, 2015.

  57. Amazon. Amazon EC2 pricing, 2015.

  58. Yang E, Hussain A, Gurney K. Neurobiologically-inspired soft switching control of autonomous vehicles. In: Advances in brain inspired cognitive systems: 5th international conference, BICS 2012, Shenyang, China, July 11–14, 2012. Berlin, Heidelberg: Springer; 2012. p. 82–91.

Download references

Acknowledgments

The research work carried out in this paper is funded through a PhD scholarship programme provided jointly by SICSA (http://www.sicsa.ac.uk) and the Division of Computer Science and Mathematics, University of Stirling. The work is also supported by Natural Science Foundation of China (under Grants 71571076 and 71171087) and the recent EPSRC grant (Ref. EP/I009310/1). Finally, the EPSRC funded ARCHIE-WeSt High Performance Computer (http://www.archie-west.ac.uk, under EPSRC grant no. EP/K000586/1) was used to obtain the simulation results reported in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amjad Ullah.

Ethics declarations

Conflict of Interest

Amjad Ullah, Jingpeng Li, Amir Hussain, and Erfu Yang declare that they have no conflict of interest.

Informed Consent

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2008 (5). Additional informed consent was obtained from all patients for which identifying information is included in this article.

Human and Animal Rights

This article does not contain any studies with human participants or animals performed by any authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ullah, A., Li, J., Hussain, A. et al. Towards a Biologically Inspired Soft Switching Approach for Cloud Resource Provisioning. Cogn Comput 8, 992–1005 (2016). https://doi.org/10.1007/s12559-016-9391-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12559-016-9391-y

Keywords

Navigation