Skip to main content
Log in

Imbalanced Learning for Air Pollution by Meta-Cognitive Online Sequential Extreme Learning Machine

  • Published:
Cognitive Computation Aims and scope Submit manuscript

Abstract

Many time series problems such as air pollution index forecast require online sequential learning rather than batch learning. One of the major obstacles for air pollution index forecast is the data imbalance problem so that forecast model biases to the majority class. This paper proposes a new method called meta-cognitive online sequential extreme learning machine (MCOS-ELM) that aims to alleviate data imbalance problem and sequential learning at the same time. Under a real application of air pollution index forecast, the proposed MCOS-ELM was compared with retrained ELM and online sequential extreme learning machine in terms of accuracy and computational time. Experimental results show that MCOS-ELM has the highest efficiency and best accuracy for predicting the minority class (i.e., the most important but with fewest training samples) of air pollution level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Grivas G, Chaloulakou A. Artificial neural network models for prediction of PM10 hourly concentrations, in the Greater Area of Athens, Greece. Atmos Environ. 2006;40(7):1216–29.

    Article  CAS  Google Scholar 

  2. Huang G-B, Zhu Q-Y, Siew C-K. Extreme learning machine: theory and applications. Neurocomputing. 2006;70(1–3):489–501.

    Article  Google Scholar 

  3. Vong C-M, Ip W-F, Wong P-K, Chiu C-C. Predicting minority class for suspended particulate matters level by extreme learning machine. Neurocomputing. 2014;128:136–44.

    Article  Google Scholar 

  4. Sun Z-L, Au K-F, Choi T-M. A neuro-fuzzy inference system through integration of fuzzy logic and extreme learning machines. IEEE Trans Syst Man Cybern B Cybern. 2007;37(5):1321–31.

    Article  PubMed  Google Scholar 

  5. Zhang R, Huang G-B, Sundararajan N, Saratchandran P. Multicategory classification using an extreme learning machine for microarray gene expression cancer diagnosis. IEEE/ACM Trans Comput Biol Bioinform. 2007;4(3):485–95.

    Article  CAS  PubMed  Google Scholar 

  6. Nizar AH, Dong ZY, Wang Y. Power utility nontechnical loss analysis with extreme learning machine method. IEEE Trans Power Syst. 2008;23(3):946–55.

    Article  Google Scholar 

  7. Suresh S, Saraswathi S, Sundararajan N. Performance enhancement of extreme learning machine for multi-category sparse data classification problems. Eng Appl Artif Intell. 2010;23(7):1149–57.

    Article  Google Scholar 

  8. Xu Y, Dong ZY, Meng K, Zhang R, Wong KP. Real-time transient stability assessment model using extreme learning machine. Gener Transm Distrib IET. 2011;5(3):314–22.

    Article  Google Scholar 

  9. Savitha R, Suresh S, Sundararajan N. Fast learning circular complex-valued extreme learning machine (CC-ELM) for real-valued classification problems. Inf Sci. 2012;187:277–90.

    Article  Google Scholar 

  10. Wang QF, Cambria E, Liu CL, Hussain A. Common sense knowledge for handwritten Chinese recognition. Cognit Comput. 2013;5(2):234–42.

    Article  Google Scholar 

  11. Cambria E, Hussain A. Sentic album: content-, concept-, and context-based online personal photo management system. Cognit Comput. 2012;4(4):477–96.

    Article  Google Scholar 

  12. Cambria E, Hussain A. Sentic computing: techniques, tools, and applications”,springer briefs in cognitive computation. Dordrecht: Springer; 2012.

    Book  Google Scholar 

  13. Feng L, Ong YS, Lim MH. ELM-guided memetic computation for vehicle routing. IEEE Intell Syst. 2013;28(6):10–3.

    Google Scholar 

  14. Gastaldo P, Zunino R, Cambria E, Decherchi S. Combining ELMs with random projections. IEEE Intell Syst. 2013;28(6):18–20.

    Google Scholar 

  15. Huang G-B, Zhou H, Ding X, Zhang R. Extreme learning machine for regression and multiclass classification. IEEE Trans Syst Man Cybern B Cybern. 2012;42(2):513–29.

    Article  PubMed  Google Scholar 

  16. Liang N-Y, Huang G-B, Saratchandran P, Sundararajan N. A fast and accurate online sequential learning algorithm for feedforward networks. IEEE Trans Neural Netw. 2006;17(6):1411–23.

    Article  PubMed  Google Scholar 

  17. Sun Y, Yuan Y, Wang G. An OS-ELM based distributed ensemble classification framework in P2P networks. Neurocomputing. 2011;74(16):2438–43.

    Article  Google Scholar 

  18. Xie S, Yang J, Gong H, Yoon S, Park D. Intelligent fingerprint quality analysis using online sequential extreme learning machine. Soft Comput. 2012;16(9):1555–68.

    Article  Google Scholar 

  19. Zhao J, Wang Z, Park DS. Online sequential extreme learning machine with forgetting mechanism. Neurocomputing. 2012;87:79–89.

    Article  Google Scholar 

  20. Wang H, Qian G, Feng X-Q. Predicting consumer sentiments using online sequential extreme learning machine and intuitionistic fuzzy sets. Neural Comput Appl. 2013;22(3–4):479–89.

    Article  Google Scholar 

  21. Murphey YL, Guo H, Feldkamp LA. Neural learning from unbalanced data. Appl Intell. 2004;21(2):117–28.

    Article  Google Scholar 

  22. SateeshBabu G, Suresh S. Meta-cognitive neural network for classification problems in a sequential learning framework. Neurocomputing. 2012;81:86–96.

    Article  Google Scholar 

  23. Subramanian K, Suresh S. A meta-cognitive sequential learning algorithm for neuro-fuzzy inference system. Appl Soft Comput. 2012;12(11):3603–14.

    Article  Google Scholar 

  24. Savitha R, Suresh S, Sundararajan N. A meta-cognitive learning algorithm for a fully complex-valued relaxation network. Neural Netw. 2012;32:209–18.

    Article  CAS  PubMed  Google Scholar 

  25. Nelson TO, Narens L. Metamemory: a theoretical framework and new findings. Psychol Learn Motiv. 1990;26:125–41.

    Google Scholar 

  26. SMG. (16 Apr 2013). E-publication Download Page. Available: http://www.smg.gov.mo/www/ccaa/pdf/e_pdf_download.php.

  27. Huang G-B (2013). MATLAB codes of ELM algorithm. Available: http://www.ntu.edu.sg/home/egbhuang/elm_random_hidden_nodes.html.

  28. Juhos I, Makra L, Tóth B. Forecasting of traffic origin NO and NO2 concentrations by support vector machines and neural networks using principal component analysis. Simul Model Pract Theory. 2008;16(9):1488–502.

    Article  Google Scholar 

  29. Stigler SM. Francis galton’s account of the invention of correlation. Stat Sci. 1989;4(2):73–9.

    Article  Google Scholar 

  30. Yang J-Y, Ip W-F, Vong C-M, Wong P-K. Effect of choice of kernel in support vector machines on ambient air pollution forecasting. In: International Conference on System Science and Engineering (ICSSE); 2011. pp. 552–557.

  31. SMG. (2013). Air quality index bulletin. Available: http://www.smg.gov.mo/www/ccaa/iqa/fe_iqa.htm.

  32. Huang G-B (2013). Basic ELM algorithms. Available: http://www.ntu.edu.sg/home/egbhuang/elm_codes.html.

  33. Savitha R, Suresh S, Kim HJ. A meta-cognitive learning algorithm for an extreme learning classifier. Cognit Comput. 2013. doi:10.1007/s12559-013-9223-2.

    Google Scholar 

  34. Zhang S, He B, Nian R, Wang J, Han B, Lendasse A, Yuan G. Fast image recognition based on independent component analysis and extreme learning machine. Cognit Comput. 2014. doi:10.1007/s12559-014-9245-4.

    Google Scholar 

  35. Li Y, Zhu E, Zhu X, Yin J, Zhao J. Counting pedestrian with mixed features and extreme learning machine. Cognit Comput. 2014. doi:10.1007/s12559-014-9248-1.

    Google Scholar 

  36. Xie S, Yoon S, Yang J, Lu Y, Park DS, Zhou B. Feature component-based extreme learning machines for finger vein recognition. Cognit Comput. 2014. doi:10.1007/s12559-014-9254-3.

    Google Scholar 

  37. Liu H, Sun F, Yu Y. Multitask extreme learning machine for visual tracking. Cognit Comput. 2014. doi:10.1007/s12559-013-9242-z.

    Google Scholar 

Download references

Acknowledgments

The research is supported by the University of Macau Research Grant, Grant No. MYRG141(Y2-L2)-FST11-IWF, MYRG075(Y2-L2)-FST12-VCM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chi-Man Vong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vong, CM., Ip, WF., Chiu, CC. et al. Imbalanced Learning for Air Pollution by Meta-Cognitive Online Sequential Extreme Learning Machine. Cogn Comput 7, 381–391 (2015). https://doi.org/10.1007/s12559-014-9301-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12559-014-9301-0

Keywords

Navigation