Skip to main content

Advertisement

Log in

Opening up a window into ecosystems with Ediacara-type organisms: preservation of molecular fossils in the Khatyspyt Lagerstätte (Arctic Siberia)

  • Research Paper
  • Published:
PalZ Aims and scope Submit manuscript

Abstract

The Khatyspyt Formation in Arctic Siberia is one of only two carbonate settings with Ediacara-type fossils. As a potential hydrocarbon source rock, it contains abundant molecular fossils that may help to expand our understanding of these ecosystems. Unfortunately, however, the molecular fossil record in geological materials is commonly biased by secondary processes such as thermal maturation, migration of bitumen compounds or surface contamination. In this study, we evaluate the preservation of molecular fossils in a sample from the Khatyspyt Formation and elucidate their paleobiological meaning. Our results reveal that the organic matter is remarkably immature (oil window maturity) and shows little effect of biodegradation. Petrographic observations, exterior/interior experiments, and the similarity between free bitumen, mineral-occluded bitumen, and kerogen pyrolysate point to the syngeneity of the molecular fossils. Abundant hopanes, cyclohexylalkanes, and methyl-branched alkanes indicate a bacterial source of the organic matter, likely including cyanobacteria and anaerobic bacteria. At the same time, a carbonaceous compression fossil on top of the sample and abundant steranes indicate the presence of eukaryotes. The steranes show typical distributions for the Ediacaran (i.e., dominance of stigmastane). Given the exceptional preservation of the body fossils, trace fossils, and molecular fossils, the Khatyspyt Formation can be considered a fossil lagerstätte sensu Seilacher (1970: Begriff und Bedeutung der Fossil-Lagerstätten. Neues Jahrbuch für Geologie und Paläontologie, Monatshefte: 34–39). The combined analysis of sedimentary facies, paleontology (body, trace, and molecular fossils), and biogeochemistry will provide a more complete understanding of ecosystems with Ediacara-type fossils.

Kurzfassung

Die Khatyspyt-Formation im arktischen Sibirien ist eines von lediglich zwei karbonatischen Ablagerungsräumen mit Ediacara-Fossilien. Gleichzeitig ist sie auch ein potentielles Kohlenwasserstoff-Muttergestein. Nicht zuletzt aufgrund der daher reichlich enthaltenen molekularen Fossilien birgt sie das Potential, unser Verständnis dieser Ökosysteme zu verbessern. Das Inventar an in geologischen Materialien erhaltenen molekularen Fossilien ist jedoch häufig durch diverse sekundäre Prozesse, wie z. B. thermische Maturierung, die sekundäre Migration von Kohlenwasserstoffen oder Oberflächen-Kontamination, verfälscht. In dieser Studie evaluieren wir die Erhaltung molekularer Fossilien in einer Probe der Khatyspyt-Formation und diskutieren ihre paläobiologische Bedeutung. Unsere Ergebnisse zeigen, dass das organische Material eine bemerkenswert niedrige Reife aufweist (Ölfenster) und kaum durch Biodegradation beeinflusst wurde. Petrographische Beobachtungen, Exterieur/Interieur-Experimente, und die Gleichheit zwischen freiem Bitumen, mineral-gebundenem Bitumen und Kerogen-Pyrolysat unterstreichen die Syngenität der enthaltenen molekularen Fossilien. Hopane, Cyclohexane, und and methylverzweigte Alkane deuten auf die Anwesenheit von Bakterien, wahrscheinlich inklusive Cyanobakterien und anaeroben Bakterien. Gleichzeitig belegen ein organisch erhaltenes Makrofossil auf der Probenoberseite und häufige Sterane, welche ein für das Ediacarium typisches Verteilungsmuster aufweisen (Dominanz von Stigmastan), die Existenz von Eukaryoten. Aufgrund der außergewöhnlichen Erhaltung von Körper-, Spuren- und molekularen Fossilien kann die Khatyspyt-Formation als Fossillagerstätte sensu Seilacher (1970: Begriff und Bedeutung der Fossil-Lagerstätten. Neues Jahrbuch für Geologie und Paläontologie, Monatshefte: 34–39) interpretiert werden. Die zukünftig gemeinschaftliche Analyse von sedimentärer Fazies, Paläontologie (Körper-, Spuren- und molekulare Fossilien) und Biogeochemie wird ein kompletteres Bild von Ökosystemen mit Ediacara-Fossilien ermöglichen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahmed, M., and S.C. George. 2004. Changes in the molecular composition of crude oils during their preparation for GC and GC–MS analyses. Organic Geochemistry 35: 137–155.

    Article  Google Scholar 

  • Aref’yev, O.A., M.N. Zabrodina, G.V. Rusinova, and A.A. Petrov. 1993. Biomarkers of East Siberian crude oils. Petroleum Chemistry 33(6): 474–490.

    Google Scholar 

  • Billings, E. 1872. On some fossils from the primordial rocks of Newfoundland. Canadian Naturalist 6(4): 465–479.

    Google Scholar 

  • Bishop, A.N., G.D. Love, A.D. Mcaulay, C.E. Snape, and P. Farrimond. 1998. Release of kerogen-bound hopanoids by hydropyrolysis. Organic Geochemistry 29(4): 989–1001.

    Article  Google Scholar 

  • Blumenberg, M., V. Thiel, and J. Reitner. 2015. Organic matter preservation in the carbonate matrix of a recent microbial mat—Is there a ‘mat seal effect’? Organic Geochemistry 87: 25–34.

    Article  Google Scholar 

  • Blumer, M., R. Guillard, and T. Chase. 1971. Hydrocarbons of marine phytoplankton. Marine Biology 8: 183–189.

    Article  Google Scholar 

  • Bowring, S.A., J.P. Grotzinger, C.E. Isachsen, A.H. Knoll, S.M. Pelechaty, and P. Kolosov. 1993. Calibrating rates of early Cambrian evolution. Science 261: 1293–1298.

    Article  Google Scholar 

  • Bray, E.E., and E.D. Evans. 1961. Distribution of n-paraffins as a clue to recognition of source beds. Geochimica et Cosmochimica Acta 22: 2–15.

    Article  Google Scholar 

  • Brocks, J.J. 2011. Millimeter-scale concentration gradients of hydrocarbons in Archean shales: Live-oil escape or fingerprint of contamination? Geochimica et Cosmochimica Acta 75: 3196–3213.

    Article  Google Scholar 

  • Brocks, J.J., E. Grosjean, and G.A. Logan. 2008. Assessing biomarker syngeneity using branched alkanes with quaternary carbon (BAQCs) and other plastic contaminants. Geochimica et Cosmochimica Acta 72: 871–888.

    Article  Google Scholar 

  • Brocks, J.J., A.J.M. Jarrett, E. Sirantoine, F. Kenig, M. Moczydłowska, S. Porter, and J. Hope. 2015. Early sponges and toxic protists: possible sources of cryostane, an age diagnostic biomarker antedating Sturtian Snowball Earth. Geobiology 14(2): 129–149.

    Article  Google Scholar 

  • Brocks, J.J., G.D. Love, C.E. Snape, G.A. Logan, R.E. Summons, and R. Buick. 2003. Release of bound aromatic hydrocarbons from late Archean and Mesoproterozoic kerogens via hydropyrolysis. Geochimica et Cosmochimica Acta 67: 1521–1530.

    Article  Google Scholar 

  • Brocks, J.J., and A. Pearson. 2005. Building the biomarker tree of life. Reviews in Mineralogy and Geochemistry 59: 233–258.

    Article  Google Scholar 

  • Brocks, J.J., and P. Schaeffer. 2008. Okenane, a biomarker for purple sulfur bacteria (Chromatiaceae), and other new carotenoid derivatives from the 1640 Ma Barney Creek Formation. Geochimica et Cosmochimica Acta 72: 1396–1414.

    Article  Google Scholar 

  • Brocks, J.J., and R.E. Summons. 2003. Chapter 8.03 Sedimentary hydrocarbons, biomarkers for early life. In Treatise in geochemistry 8, ed. H.D. Holland, and K. Turekian, 64–103. Amsterdam: Elsevier.

    Google Scholar 

  • Callow, R.H.T., and M.D. Brasier. 2009. Remarkable preservation of microbial mats in Neoproterozoic siliciclastic settings: Implications for Ediacaran taphonomic models. Earth-Science Reviews 96: 207–219.

    Article  Google Scholar 

  • Chen, Z., C. Zhou, S. Xiao, W. Wang, C. Guan, H. Hua, and X. Yuan. 2014. New Ediacara fossils preserved in marine limestone and their ecological implications. Scientific Reports 4: 4180.

    Google Scholar 

  • De Rosa, M., A. Gambacorta, L. Minale, and J.D. Bu’Lock. 1971. Cyclohexane fatty acids from a thermophilic bacterium. Journal of the Chemical Society D: Chemical Communications 21: 1334a.

    Article  Google Scholar 

  • Dong, L., S. Xiao, B. Shen, and C. Zhou. 2008. Silicified Horodyskia and Palaeopascichnus from upper Ediacaran cherts in South China: tentative phylogenetic interpretation and implications for evolutionary stasis. Journal of the Geological Society 165: 367–378.

    Article  Google Scholar 

  • Duda, J.-P., M. Blumenberg, V. Thiel, K. Simon, M. Zhu, and J. Reitner. 2014a. Geobiology of a palaeoecosystem with Ediacara-type fossils: the shibantan member (Dengying formation, South China). Precambrian Research 255(1): 48–62. doi:10.1016/j.precamres.2014.09.012.

    Article  Google Scholar 

  • Duda, J.-P., V. Thiel, J. Reitner, and M. Blumenberg. 2014b. Assessing possibilities and limitations for biomarker analyses on outcrop samples: a case study on carbonates of the shibantan member (Ediacaran Period, Dengying Formation, South China). Acta Geologica Sinica (English Edition) 88: 1696–1704. doi:10.1111/1755-6724.12338.

    Article  Google Scholar 

  • Duda, J.-P., M. Zhu, and J. Reitner. 2015. Depositional dynamics of a bituminous carbonate facies in a tectonically induced intra-platform basin: the Shibantan Member (Dengying Formation, Ediacaran Period). Carbonates and Evaporites 31(1): 87–99. doi:10.1007/s13146-015-0243-8.

    Article  Google Scholar 

  • Durand, B. 1980. Kerogen: Insoluble organic matter from sedimentary rocks. Paris: Éditions Technip.

    Google Scholar 

  • Dzik, J. 2003. Anatomical information content in the Ediacaran fossils and their possible zoological affinities. Integrative and Comparative Biology 43: 114–126.

    Article  Google Scholar 

  • Eglinton, G., and M. Calvin. 1967. Chemical fossils. Scientific American 216: 32–43.

    Article  Google Scholar 

  • Erwin, D.H., and J.W. Valentine. 2013. The Cambrian explosion: the construction of animal biodiversity. Greenwood Village: Roberts and Company Publishers Inc.

    Google Scholar 

  • Fedonkin, M.A. 1990. Systematic description of Vendian Metazoa. In The Vendian System. V2. Paleontology, ed. B.S. Sokolov, and A.B. Iwanowski, 71–120. Berlin: Springer.

    Google Scholar 

  • Fowler, M.G., and A.G. Douglas. 1987. Saturated hydrocarbon biomarkers in oils of late Precambrian age from Eastern Siberia. Organic Geochemistry 11(3): 201–213.

    Article  Google Scholar 

  • French, K.L., C. Hallmann, J.M. Hope, P.L. Schoon, J.A. Zumberge, Y. Hoshino, C.A. Peters, S.C. George, G.D. Love, and J.J. Brocks. 2015. Reappraisal of hydrocarbon biomarkers in Archean rocks. Proceedings of the National Academy of Sciences 112: 5915–5920.

    Article  Google Scholar 

  • Gelin, F., J.W. De Leeuw, J.S. Sinninghe Damsté, S. Derenne, C. Largeau, and P. Metzger. 1994. The similarity of chemical structures of soluble aliphatic polyaldehyde and insoluble algaenan in the green microalga Botryococcus braunii race A as revealed by analytical pyrolysis. Organic Geochemistry 21(5): 423–435.

    Article  Google Scholar 

  • Gelpi, E., H. Schneider, J. Mann, and J. Oró. 1970. Hydrocarbons of geochemical significance in microscopic algae. Phytochemistry 9: 603–612.

    Article  Google Scholar 

  • Grantham, P.J. 1986. The occurrence of unusual C27 and C29 sterane predominances in two types of Oman crude oil. Organic Geochemistry 9(1): 1–10.

    Article  Google Scholar 

  • Grantham, P.J., G.W.M. Lijmbach, and J. Posthuma. 1990. Geochemistry of crude oils in Oman. In Classic petroleum provinces, ed. J. Brooks, 317–328. London: Geological Society Special Publication 50.

    Google Scholar 

  • Grantham, P.J., and L.L. Wakefield. 1988. Variations in the sterane carbon number distributions of marine source rock derived crude oils through geological time. Organic Geochemistry 12(1): 61–73.

    Article  Google Scholar 

  • Grazhdankin, D.V., U. Balthasar, K.E. Nagovitsin, and B.B. Kochnev. 2008. Carbonate-hosted Avalon-type fossils in Arctic Siberia. Geology 36: 803–806.

    Article  Google Scholar 

  • Grosjean, E., and G.A. Logan. 2007. Incorporation of organic contaminants into geochemical samples and an assessment of potential sources: Examples from Geoscience Australia marine survey S282. Organic Geochemistry 38: 853–869.

    Article  Google Scholar 

  • Grosjean, E., G.D. Love, C. Stalvies, D.A. Fike, and R.E. Summons. 2009. Origin of petroleum in the Neoproterozoic-Cambrian South Oman Salt Basin. Organic Geochemistry 40: 87–110.

    Article  Google Scholar 

  • Gürich, G. 1930a. Die bislang ältesten Spuren von Organismen in Südafrika. C.R. 15. International Geological Congress, South Africa 1929: 670–680.

  • Gürich, G. 1930b. Über den Kuibisquarzit in Südwestafrika. Zeitschrift der Deutschen Geologischen Gesellschaft 82: 637.

    Google Scholar 

  • Gürich, G. 1933. Die Kuibis-Fossilien der Nama-Formation von Südwestafrika. Nachträge und Zusätze. Paläontologische Zeitschrift 15: 137–154.

    Article  Google Scholar 

  • Hallmann, C., A.E. Kelly, S.N. Gupta, and R.E. Summons. 2011. Reconstructing deep-time biology with molecular fossils. In Quantifying the evolution of early life, ed. M. Laflamme, J.D. Schiffbauer, and S.Q. Dornbos, 355–401. Berlin: Springer.

    Chapter  Google Scholar 

  • Hoffman, P.F., A.J. Kaufman, G.P. Halverson, and D.P. Schrag. 1998. A neoproterozoic snowball earth. Science 281: 1342–1346.

    Article  Google Scholar 

  • Hoffmann, C.F., C.B. Foster, T.G. Powell, and R.E. Summons. 1987. Hydrocarbon biomarkers from Ordovician sediments and the fossil alga Gloeocapsomorpha prisca Zalessky 1917. Geochimica et Cosmochimica Acta 51: 2681–2697.

    Article  Google Scholar 

  • Kaneda, T. 1991. Iso- and anteiso-fatty acids in bacteria: biosynthesis, function, and taxonomic significance. Microbiological Reviews 55(2): 288–301.

    Google Scholar 

  • Kashirtsev, V.A. 1988. Natural bitumens of the northeastern Siberian Platform. Yakutsk: Izd. YaF SO AN SSSR. (in Russian).

    Google Scholar 

  • Kashirtsev, V.A. 2003. Organic geochemistry of naphthides in the east of the Siberian Platform. Yakutsk: Izd. YaF SO AN SSSR. (in Russian).

    Google Scholar 

  • Kashirtsev, V.A., A.E. Kontorovich, V.L. Ivanov, and A.F. Safronov. 2010. Natural bitumen fields in the northeast of the Siberian Platform. Russian Geology and Geophysics 51: 72–82.

    Article  Google Scholar 

  • Kaufman, A.J., H. Cui, S. Peek, V. Rogov, D. Grazhdankin, and S. Xiao. 2014. The effect of seawater redox stratification on early metazoans from the terminal Ediacaran Khatyspyt Formation of arctic Siberia. In South China 2014: A symposium and field workshop on Ediacaran and Cryogenian stratigraphy. Abstracts. International Commission on Stratigraphy, Subcommissions on Ediacaran and Cryogenian Stratigraphy: 27.

  • Kelly, A.E., G.D. Love, J.E. Zumberge, and R.E. Summons. 2011. Hydrocarbon biomarkers of neoproterozoic to lower Cambrian oils from eastern Siberia. Organic Geochemistry 42: 640–654.

    Article  Google Scholar 

  • Killops, S.D., and V.J. Killops. 2005. Introduction to organic geochemistry, 2nd ed. Malden: Wiley-Blackwell.

    Google Scholar 

  • Kirschvink, J.L. 1992. Late Proterozoic Low-Latitude Global Glaciation: the Snowball Earth. In The Proterozoic biosphere: A multidisciplinary study, ed. J.W. Schopf, and C. Klein, 51–52. Cambridge: Cambridge University Press.

    Google Scholar 

  • Kissin, Y.V. 1987. Catagenesis and composition of petroleum: Origin of n-alkanes and isoalkanes in petroleum crudes. Geochimica et Cosmochimica Acta 51: 2445–2457.

    Article  Google Scholar 

  • Knoll, A.H., M. Walter, G.M. Narbonne, and N. Christie-Blick. 2006. The Ediacaran Period: a new addition to the geologic time scale. Lethaia 39: 13–30.

    Article  Google Scholar 

  • Knoll, A.H., J.P. Grotzinger, A.J. Kaufman, and P. Kolosov. 1995. Integrated approaches to terminal Proterozoic stratigraphy: an example from the Olenek Uplift, northeastern Siberia. Precambrian Research 73: 251–270.

    Article  Google Scholar 

  • Knoll, A.H., R.E. Summons, J.R. Waldbauer, and J.E. Zumberge. 2007. The geological succession of primary producers in the oceans. In The evolution of primary producers in the sea, ed. P. Falkowski, and A.H. Knoll, 133–163. Burlington: Elsevier.

    Chapter  Google Scholar 

  • Knoll, A.H., M. Walter, G.M. Narbonne, and N. Christie-Blick. 2004. A new period for the geologic time scale. Science 305: 621–622.

    Article  Google Scholar 

  • Kontorovich, A.E., T. Parfenova, V. Kashirtsev, N. Aksenova, E. Zubova, E. Ivanova, and N. Yudina. 2009. Organic geochemistry of the Vendian Khatyspyt Formation (northeast of the Siberian Platform). Book of abstracts, 24th international meeting on organic geochemistry, 6–11 September 2009, Bremen, Germany: 174.

  • Kontorovich, A.E., V.S. Surkov, and A.A. Trofimuk. 1981. Geology of petroleum and gas of the Siberian platform. Moscow: Nedra. (in Russian).

    Google Scholar 

  • Kontorovich, V.A., A.E. Kontorovich, I.A. Gubin, A.M. Zoteev, V.V. Lapkovsky, N.A. Malyshev, M.V. Soloviev, and G.S. Fradkin. 2013. The Neoproterozoic-Phanerozoic section of the Anabar-Lena province: structural framework, geological model, and petroleum potential. Russian Geology and Geophysics 54: 980–996.

    Article  Google Scholar 

  • Koopmans, M.P., J. Köster, H.M.E. Van Kaam-Peters, F. Kenig, S. Schouten, W.A. Hartgers, J.W. De Leeuw, and S. Damsté. 1996. Diagenetic and catagenetic products of isorenieratene: Molecular indicators for photic zone anoxia. Geochimica et Cosmochimica Acta 60(22): 4467–4496.

    Article  Google Scholar 

  • Love, G.D., C. Stalvies, E. Grosjean, W. Meredith, and C.E. Snape. 2008. Analysis of molecular biomarkers covalently bound within neoproterozoic sedimentary kerogen. In From evolution to geobiology: Research questions driving paleontology at the start of a new century, ed. P.H. Kelley, and R.K. Bambach. Boulder: The Paleontological Society.

    Google Scholar 

  • Love, G.D., C.E. Snape, A.D. Carr, and R.C. Houghton. 1995. Release of covalently-bound alkane biomarkers in high yields from kerogen via catalytic hydropyrolysis. Organic Geochemistry 23: 981–986.

    Article  Google Scholar 

  • Mello, M.R., N. Telnaes, P.C. Gaglianone, M.I. Chicarelli, S.C. Brassel, and J.R. Maxwell. 1987. Organic geochemical characterisation of depositional palaeoenvironments of source rocks and oils in Brazilian marginal basins. Organic Geochemistry 13: 31–45.

    Article  Google Scholar 

  • Meredith, W., C.A. Russel, M. Cooper, C.E. Snape, G.D. Love, D. Fabbri, and C.H. Vane. 2004. Trapping hydropyrolysates on silica and their subsequent thermal desorption to facilitate rapid fingerprinting by GC–MS. Organic Geochemistry 35: 73–89.

    Article  Google Scholar 

  • Meredith, M.C.E., A.D. Snape, H.P.Nytoft Carr, and G.D. Love. 2008. The occurrence of unusual hopenes in hydropyrolysates generated from severely biodegraded oil seep asphaltenes. Organic Geochemistry 39(8): 1243–1248.

    Article  Google Scholar 

  • Mißbach, H., J.-P. Duda, N.K. Lünsdorf, B.C. Schmidt, and V. Thiel. 2016. Testing the preservation of biomarkers during experimental maturation of an immature kerogen. International Journal of Astrobiology 15(3): 165–175. doi:10.1017/S1473550416000069.

    Article  Google Scholar 

  • Nagovitsin, K.E., V.I. Rogov, V.V. Marusin, G.A. Karlova, A.V. Kolesnikov, N.V. Bykova, and D.V. Grazhdankin. 2015. Revised Neoproterozoic and Terreneuvian stratigraphy of the Lena-Anabar Basin and north-western slope of the Olenek Uplift, Siberian Platform. Precambrian Research 270: 226–245.

    Article  Google Scholar 

  • Narbonne, G.M. 2005. The ediacara biota: neoproterozoic origin of animals and their ecosystems. Annual Review of Earth and Planetary Sciences 33: 421–442.

    Article  Google Scholar 

  • Narbonne, G.M., S. Xiao, G.A. Shields, and J.G. Gehling. 2012. Chapter 18—The Ediacaran period. In The geologic time scale 2012, ed. F.M. Gradstein, J.G. Ogg, M.D. Schmitz, and G.M. Ogg, 413–435. Boston: Elsevier.

    Chapter  Google Scholar 

  • Norgate, C.M., C.J. Boreham, and A.J. Wilkins. 1999. Changes in hydrocarbon maturity indices with coal rank and type, Buller Coalfield, New Zealand. Organic Geochemistry 30: 985–1010.

    Article  Google Scholar 

  • Parfenova, T., V. Kashirtsev, L. Borisova, E. Ivanova, B. Kochnev, K. Nagovitsyn, and V. Melenevsky. 2011. Carbonaceous rocks of the Neoproterozoic (Vendian) Khatyspyt Formation as a possible source of oils in the northeastern Siberian Platform. Book of abstracts, 25th international meeting on organic geochemistry, 18–23 September 2011, Interlaken, Switzerland: 434.

  • Parfenova, T.M., B.B. Kochnev, K.E. Nagovitsin, E.N. Ivanova, V.A. Kashirtsev, and A.E. Kontorovich. 2010. Geochemistry of organic matter of the Khatyspyt Formation (Vend, North-Easten Siberian Platform). Advances in organic geochemistry. Transactions of the Russian scientific conference (Novosibirsk, 11–15 October 2010): 265–268 (in Russian).

  • Pawlowska, M.M., N.J. Butterfield, and J.J. Brocks. 2012. Lipid taphonomy in the Proterozoic and the effect of microbial mats on biomarker preservation. Geology 41: 103–106.

    Article  Google Scholar 

  • Peters, K.E., C.C. Walters, and J.M. Moldowan. 2005. The Biomarker Guide Volume 2: Biomarkers and isotopes in petroleum exploration and earth history. Cambridge: The Press Syndicate of the University of Cambridge.

    Google Scholar 

  • Philp, R.P. 1985. Fossil fuel biomarkers. Applications and spectra. Methods in geochemistry and geophysics 23. Amsterdam: Elsevier.

  • Requejo, A.G. 1994. Maturation of petroleum source rocks—II. Quantitative changes in extractable hydrocarbon content and composition associated with hydrocarbon generation. Organic Geochemistry 21: 91–105.

    Article  Google Scholar 

  • Requejo, A.G., G.B. Hieshima, C.S. Hsu, T.C. McDonald, and R. Sassen. 1997. Short-chain (C21 and C22) diasteranes in petroleum and source rocks as indicators of maturity and depositional environment. Geochimica et Cosmochimica Acta 61(13): 2653–2667.

    Article  Google Scholar 

  • Rogov, V., V. Marusin, N. Bykova, Y. Goy, K. Nagovitsin, B. Kochnev, G. Karlova, and D. Grazhdankin. 2012. The oldest evidence of bioturbation on Earth. Geology 40(5): 395–398.

    Article  Google Scholar 

  • Rogov, V., V. Marusin, N. Bykova, Y. Goy, K. Nagovitsin, B. Kochnev, G. Karlova, and D. Grazhdankin. 2013a. The oldest evidence of bioturbation on earth: Reply. Geology 41(5): e290.

    Article  Google Scholar 

  • Rogov, V., V. Marusin, N. Bykova, Y. Goy, K. Nagovitsin, B. Kochnev, G. Karlova, and D. Grazhdankin. 2013b. The oldest evidence of bioturbation on earth: Reply. Geology 41(5): e300.

    Article  Google Scholar 

  • Rogov, V.I., G.A. Karlova, V.V. Marusin, B.B. Kochnev, K.E. Nagovitsin, and D.V. Grazhdankin. 2015. Duration of the first biozone in the Siberian hypostratotype of the Vendia. Russian Geology and Geophysics 56: 573–583.

    Article  Google Scholar 

  • Rohmer, M., P. Bouvier-Nave, and G. Ourisson. 1984. Distribution of hopanoid triterpenes in prokaryotes. Journal of General Microbiology 130: 1137–1150.

    Google Scholar 

  • Rubinstein, I., and O.P. Strausz. 1979. Geochemistry of the thiourea adduct fraction from an Alberta petroleum. Geochimica et Cosmochimica Acta 43: 1387–1392.

    Article  Google Scholar 

  • Schinteie, R., and J.J. Brocks. 2014. Evidence for ancient halophiles? Testing biomarker syngeneity of evaporites from Neoproterozoic and Cambrian strata. Organic Geochemistry 72: 46–58.

    Article  Google Scholar 

  • Seifert, W.K., and J.M. Moldowan. 1978. Applications of steranes, terpanes and monoaromatics to the maturation, migration and source of crude oils. Geochimica et Cosmochimica Acta 42: 77–95.

    Article  Google Scholar 

  • Seifert, W.K., and J.M. Moldowan. 1980. The effect of thermal stress on source-rock quality as measured by hopane stereochemistry. Physics and Chemistry of the Earth 12: 229–237.

    Article  Google Scholar 

  • Seifert, W.K., and J.M. Moldowan. 1986. Use of biological markers in petroleum exploration. In Methods in Geochemistry and Geophysics 24, ed. R.B. Johns, 261–290. Amsterdam: Elsevier.

    Google Scholar 

  • Seilacher, A. 1970. Begriff und Bedeutung der Fossil-Lagerstätten. Neues Jahrbuch für Geologie und Paläontologie, Monatshefte: 34–39.

  • Seilacher, A. 1989. Vendozoa: Organismic construction in the Proterozoic biosphere. Lethaia 22: 229–239.

    Article  Google Scholar 

  • Seilacher, A. 1992. Vendobionta and Psammocorallia: lost constructions of Precambrian evolution. Journal of the Geological Society 149: 607–613.

    Article  Google Scholar 

  • Seilacher, A., D. Grazhdankin, and A. Legouta. 2003. Ediacaran biota: The dawn of animal life in the shadow of giant protists. Paleontological Research 7(1): 43–54.

    Article  Google Scholar 

  • Shen, B., S. Xiao, L. Dong, C. Zhou, and J. Liu. 2007. Problematic macrofossils from Ediacaran successions in the North China and Chaidam Blocks: Implications for their evolutionary roots and biostratigraphic significance. Journal of Paleontology 81(6): 1396–1411.

    Article  Google Scholar 

  • Shen, B., S. Xiao, C. Zhou, and X. Yuan. 2009. Yangtziramulus zhangi new genus and species, a carbonate-hosted macrofossil from the Ediacaran Dengying Formation in the Yangtze Gorges Area, South China. Journal of Paleontology 83(4): 575–587.

    Article  Google Scholar 

  • Shiea, J., S.C. Brassel, and D.M. Ward. 1990. Mid-chain branched mono- and dimethyl alkanes in hot spring cyanobacterial mats: A direct biogenic source for branched alkanes in ancient sediments? Organic Geochemistry 15(3): 223–231.

    Article  Google Scholar 

  • Sinninghe Damsté, J.S., F. Kenig, M.P. Koopmans, J. Köster, S. Schouten, J.M. Hayes, and J.W. de Leeuw. 1995. Evidence for gammacerane as an indicator of water column stratification. Geochimica et Cosmochimica Acta 59: 1895–1900.

    Article  Google Scholar 

  • Snape, C.E., C. Bolton, R.G. Dosch, and H.P. Stephens. 1989. High liquid yields from bituminous coal via hydropyrolysis with dispersed catalysts. Energy and Fuels 3: 421–425.

    Article  Google Scholar 

  • Sokolov, B.S., and M.A. Fedonkin. 1984. The Vendian as the terminal system of the Precambrian. Episodes 7(1): 12–19.

    Google Scholar 

  • Summons, R.E., and L.L. Jahnke. 1992. Hopenes and hopanes methylated in ring-A: Correlation of the hopanoids from extant methylotrophic bacteria with their fossil analogues. In Biological markers in sediments and petroleum, ed. J.M. Moldowan, P. Albrecht, and R.P. Philp, 182–200. New York: Prentice Hall.

    Google Scholar 

  • Summons, R.E., and T.G. Powell. 1992. Hydrocarbon composition of the late Proterozoic oils of the Siberian platform: implications for the depositional environment of source rocks. In Early organic evolution: implications for mineral and energy resources, ed. M. Schidlowski, S. Golubic, M.M. Kimberley, D.M. McKirdy Sr., and P.A. Trudinger, 296–307. Berlin: Springer.

    Chapter  Google Scholar 

  • Sun, W. 1986. Late Precambrian pennatulids (sea pens) from the eastern Yangtze Gorge, China: Paracharnia gen. nov. Precambrian Research 31: 361–375.

    Article  Google Scholar 

  • Suzuki, K.-I., K. Saito, A. Kawaguchi, S. Okuda, and K. Komagata. 1981. Occurrence of ω-cyclohexyl fatty acids in Curtobacterium pusillum strains. The Journal of General and Applied Microbiology 27: 261–266.

    Article  Google Scholar 

  • Tissot, B.P., and D.H. Welte. 1984. Petroleum formation and occurrence. Berlin: Springer.

    Book  Google Scholar 

  • Treibs, A. 1934. Chlorophyll- und Häminderivate in bituminösen Gesteinen, Erdölen, Erdwachsen und Asphalten. Ein Beitrag zur Entstehung des Erdöls. Justus Liebigs Annalen der Chemie 510(1): 42–62.

    Article  Google Scholar 

  • Treibs, A. 1936. Chlorophyll-und Häminderivate in organischen Mineralstoffen. Angewandte Chemie 49: 682–686.

    Article  Google Scholar 

  • Vodanjuk, S.A. 1989. Non-skeletal fossil Metazoa from the Khatyspyt Formation of the Olenek Uplift. In Late Precambrian and early Palaeozoic of Siberia. Urgent stratigraphic problems, ed. V.V. Khomentovsky, and J.K. Sovetov, 61–74. Novosibirsk: IGG SO AN SSSR. (in Russian).

    Google Scholar 

  • Volkman, J.K. 2003. Sterols in microorganisms. Applied Microbiology and Biotechnology 60: 495–506.

    Article  Google Scholar 

  • Xiao, S., B. Shen, C. Zhou, G. Xie, and X. Yuan. 2005. A uniquely preserved Ediacaran fossil with direct evidence for a quilted bodyplan. Proceedings of the National Academy of Sciences 102: 10227–10232.

    Article  Google Scholar 

  • Xiao, S., and M. Laflamme. 2009. On the eve of animal radiation: phylogeny, ecology and evolution of the Ediacara biota. Trends in Ecology and Evolution 24: 31–40.

    Article  Google Scholar 

  • Zhang, X., D. Shu, J. Han, Z. Zhang, J. Liu, and D. Fu. 2014. Triggers for the Cambrian explosion: Hypotheses and problems. Gondwana Research 25: 896–909.

    Article  Google Scholar 

Download references

Acknowledgments

This study is dedicated to Adolf Seilacher (1925–2014), a visionary paleontologist and renowned expert on the Ediacara biota. We thank C. Conradt, W. Dröse, A. Hackmann, A. Kral, M. Reinhardt, B. Röring, and A. Reimer for their technical and analytical support. We are indebted to J. Peckmann, M. Rohrssen, and M. Reich, whose comments and suggestions greatly improved the paper. The study was financially supported by the Deutsche Forschungsgemeinschaft (Grant DU 1450/3-1; SPP 1833 “Building a Habitable Earth”), the Research Department of the University of Göttingen, and the Russian Science Foundation (Grant 14-17-00409 “Mechanisms behind Ediacaran and Terreneuvian ecosystem functioning: stability and dynamic processes” to DG). This is publication number 3 of the Early Life Research Group (Department of Geobiology, University of Göttingen; Göttingen Academy of Sciences and Humanities).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan-Peter Duda.

Additional information

Handling editor: Dr. Mike Reich.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duda, JP., Thiel, V., Reitner, J. et al. Opening up a window into ecosystems with Ediacara-type organisms: preservation of molecular fossils in the Khatyspyt Lagerstätte (Arctic Siberia). PalZ 90, 659–671 (2016). https://doi.org/10.1007/s12542-016-0317-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12542-016-0317-5

Keywords

Schlüsselwörter

Navigation