Skip to main content
Log in

Study of a digital cranial endocast of the non-mammaliaform cynodont Brasilitherium riograndensis (Later Triassic, Brazil) and its relevance to the evolution of the mammalian brain

  • Research Paper
  • Published:
Paläontologische Zeitschrift Aims and scope Submit manuscript

Abstract

A digital cranial endocast of the specimen UFRGS-PV-1043-T, Brasilitherium riograndensis, was obtained from high-resolution computed tomography (μCT) scan images. This taxon is a small cynodont from the Late Triassic of Brazil, and has been used as the sister-group of the mammaliaforms in cladistic analyses. The digital endocast of UFRGS-PV-1043-T is mostly complete, allowing the description and collection of accurate linear and volumetric measurements, which were taken and compared with other non-mammaliaform cynodonts. Impressions of vessels were observed in the inner walls of the braincase. Despite the lack of a cribiform plate and the presence of a wide orbital vacuity, the endocast of Brasilitherium shows olfactory bulb casts that are relatively larger than in other non-mammaliaform cynodonts, suggesting a pattern of gradual increase in size and improvement of the olfactory sense for these structures toward the mammalian condition. The cerebral hemispheres are elongated and clearly divided by a median sulcus. The parafloccular casts are well defined, and their position corresponds to the maximum width of the endocast. In the ventral view, a large hypophyseal cast and a wide opening for the cavum epiptericum are evident. The encephalization quotient (EQ) calculated for Brasilitherium is greater than the range of EQs reported for most non-mammaliaform cynodonts (although it may be similar to that of some taxa, according to the equation used to estimate their body masses), but it is smaller than that of the mammaliaforms and mammals. A slighter increase in the brain size of Brasilitherium compared with other non-mammaliaform cynodonts was observed, along with a more significant increase in the size of the olfactory bulbs. This study supports the proposition of an early evolution of the mammalian brain associated with selective pressures for better sensorial acuity, especially regarding improved olfaction, which began with small Triassic mammaliamorphs.

Kurzfassung

Mittels μCT-Daten wurde ein virtueller Gehirnausguss von Brasilitherium riograndensis (UFRGS-PV-1043-T) erstellt. Bei diesem Taxon handelt es sich um einen kleinen Cynodontier aus der späten Trias von Brasilien, der in cladistischen Analysen die Schwestergruppe der Mammaliaformes repräsentiert. Der fast vollständige virtuelle Gehirnausguss von UFRGS-PV-1043-T ermöglicht die Beschreibung sowie genaueste lineare und volumetrische Messungen im Vergleich mit anderen nicht-mammaliaformen Cynodontier. Am inneren Schädeldach befinden sich einige Abdrücke von Blutgefässen. Obwohl eine Lamina cribrosa fehlt und die Augenhöhlen sehr groß sind, weist der virtuelle Ausguss von Brasilitherium relativ größere Bulbi olfactorii auf als bei anderen nicht-mammaliaformen Cynodontiern. Somit lässt sich eine graduelle Größenzunahme sowie Verbesserung des Riechsinns hin zu einem säugerähnlichen Zustand beobachten. Die Großhirnhälften sind verlängert und deutlich durch einen medianen Sulcus voneinander getrennt. Die Paraflocculusausgüsse sind deutlich ausgeprägt und ihre Lage korrespondiert mit der maximalen Breite des gesamten Gehirnausgusses. In ventraler Ansicht ist ein prominenter Ausguss der Hypophyse sowie eine große Öffnung in das Cavum epiptericum zu erkennen. Der für Brasilitherium berechnete Enzephalisationsquotient (EQ) ist größer als die Spannbreite der EQs der meisten anderen nicht-mammaliaformen Cynodontier. Aufgrund der Schätzung des Körpergewichts von Brasilitherium könnte dessen EQ jedoch dem bestimmter Taxa durchaus entsprechen; er ist jedoch sicherlich geringer als bei Mammaliaformes und Mammalia. Brasilitherium zeigt eine geringere Größenzunahme des Gehirns im Vergleich zu anderen nicht-mammaliaformen Cynodontiern, mit wesentlich deutlicherer Größenzunahme der Bulbi olfactorii. Diese Studie unterstützt die Annahme einer frühen Evolution des Säugergehirns assoziiert mit der Selektion erhöhter sensorischer Schärfe, insbesondere der Verbesserung der Riechleistung, die bereits bei triassischen kleinen Mammaliamorpha auftritt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abdala, F. 2007. Redescription of Platycraniellus elegans (Therapsida, Cynodontia) from the Lower Triassic of South Africa, and the cladistic relationships of eutheriodonts. Palaeontology 50(3): 591–618.

    Article  Google Scholar 

  • Bauchot, R., and H. Stephan. 1966. Données nouvelles sur l’encéphalisation des insectivores et des prosimiens. Mammalia 30: 160–196.

    Article  Google Scholar 

  • Bauchot, R., and H. Stephan. 1967. Encephales et moulages endocraniens de quelque insectivores et primates actuels. Colloques Internationaux du Centre National de la Recherche Scientifique 163: 575–587.

    Google Scholar 

  • Bonaparte, J.F. 1966. Sobre las cavidades cerebral, nasal y otras estructuras del craneo de Exaeretodon sp. (Cynodontia-Traversodontidae). Acta Geologica Lilloana 8: 5–11.

    Google Scholar 

  • Bonaparte, J.F., A.G. Martinelli, C.L. Schultz, and R. Rupert. 2003. The sister group of mammals: small cynodonts from the late Triassic of southern Brazil. Revista Brasileira de Paleontologia 5: 5–27.

    Google Scholar 

  • Bonaparte, J.F., A.G. Martinelli, and C.L. Schultz. 2005. New information on Brasilodon and Brasilitherium (Cynodontia, Probainognathia) from the Late Triassic of Southern Brazil. Revista Brasileira de Paleontologia 8(1): 25–46.

    Article  Google Scholar 

  • Butler, A.B., and W. Hodos. 1996. Comparative Vertebrate Neuroanatomy: Evolution and Adaptation. New York: Wiley-Liss.

    Google Scholar 

  • Colbert, M.W., R. Racicot, and T. Rowe. 2005. Anatomy of the cranial endocast of the bottlenose dolphin Tursiops truncatus, based on HRXCT. Journal of Mammalian Evolution 12: 195–207.

    Article  Google Scholar 

  • Deacon, T.W. 1990. Rethinking mammalian brain evolution. American Zoologist 30: 629–705.

    Google Scholar 

  • Dom, R., B.L. Fisher, and G.F. Martin. 1970. The venous system of the head and neck of the opossum (Didelphis virginiana). Journal of Morphology 132: 487–496.

    Article  Google Scholar 

  • Dunbar, R.I.M. 1995. Neocortex size and group size in primates: a test of the hypothesis. Journal of Human Evolution 28: 287–296.

    Article  Google Scholar 

  • Edinger, T. 1942. The pituitary body in giant animals fossil and living: a survey and a suggestion. Quarterly Review of Biology 17: 31–45.

    Article  Google Scholar 

  • Edinger, T. 1948. Evolution of the horse brain. Geological Society of America Memoir 25: 1–177.

    Article  Google Scholar 

  • Edinger, T. 1955. Hearing and smell in cetacean history. Monatsschrift für Psychiatrie und Neurologie 129: 37–58.

    Article  Google Scholar 

  • Edinger, T. 1964. Midbrain exposure and overlap in mammals. American Zoologist 4: 5–19.

    Google Scholar 

  • Eisenberg, J.F. 1981. The Mammalian Radiations. Chicago: University of Chicago.

    Google Scholar 

  • Eisenberg, J.F., and D.E. Wilson. 1978. Relative brain size and feeding strategies in the Chiroptera. Evolution 32: 740–751.

    Article  Google Scholar 

  • Eisenberg, J.F., and D.E. Wilson. 1981. Relative brain size and demographic strategies in Didelphis marsupialis. American Naturalist 118: 1–15.

    Article  Google Scholar 

  • Gingerich, P.D., and B.H. Smith. 1984. Allometric scaling in the dentition of primates and insectivores. In Size and Scaling in Primate Biology, ed. W.L. Jungers, 257–272. New York: Plenum Press.

    Google Scholar 

  • Goodrich, E.S. 1930. Studies on the Structure and Development of the Vertebrates. London: Macmillan and Co. Ltd.

    Book  Google Scholar 

  • Hillenius, W.J. 1992. The evolution of nasal turbinates and mammalian endothermy. Paleobiology 18: 17–29.

    Google Scholar 

  • Hillenius, W.J. 1994. Turbinates in therapsids: evidence for Late Permian origins of mammalian endothermy. Evolution 48: 207–229.

    Article  Google Scholar 

  • Hopson, J.A. 1979. Paleoneurology. In Biology of the Reptilia, Volume 9, Neurology A, ed. C. Gans, R.G. Northcutt, and P. Ulinski, 39–146. London: Academic Press.

    Google Scholar 

  • Hopson, J.A., and Kitching, J.W. 2001. A probainognathian cynodont from South Africa and the phylogeny of nonmammalian cynodonts. In Studies in Organismic and Evolutionary Biology in Honor of Alfred W. Crompton—Bulletin of Museum of Comparative Zoology, vol. 156, eds. F.A. Jenkins, M.D. Shapiro, and T. Owerkowicz, 5–35.

  • Jerison, H.J. 1973. Evolution of the Brain and Intelligence. New York: Academic Press.

    Google Scholar 

  • Jerison, H.J. 1991. Fossil brains and the evolution of the neocortex. In The Neocortex: Ontogeny and Phylogeny. NATO Advanced Science Institutes Series A: Life Sciences vol. 200, eds. B.L. Finlay, G. Innocenti, and H. Scheich. New York: Plenum Press.

  • Ji, Q., Z.-X. Luo, C.-X. Yuan, and A.R. Tabrum. 2006. A swimming mammaliaform from the Middle Jurassic and ecomorphological diversification of early mammals. Science 311: 1123–1127.

    Article  Google Scholar 

  • Kemp, T.S. 1979. The primitive cynodont Procynosuchus: structure, function, and evolution of the postcranial skeleton. Philosophical Transactions of the Royal Society of London. Series B 288: 217–258.

    Article  Google Scholar 

  • Kemp, T.S. 2009. The endocranial cavity of a nonmammalian cynodonts Chiniquodon theotenicus and its implications for the origin of the mammalian brain. Journal of Vertebrate Paleontology 29(4): 1188–1198.

    Article  Google Scholar 

  • Kermack, K.A., F. Mussett, and H.W. Rigney. 1981. The skull of Morganucodon. Zoological Journal of the Linnean Society 53: 87–175.

    Article  Google Scholar 

  • Kielan-Jaworowska, Z. 1983. Multituberculate endocranial casts. Palaeovertebrata 13: 1–12.

    Google Scholar 

  • Kielan-Jaworowska, Z. 1984. Evolution of the therian mammals in the late Cretaceous of Asia. Part VI. Endocranial casts of eutherian mammals. Palaeontologia Polonica 46: 157–171.

    Google Scholar 

  • Kielan-Jaworowska, Z. 1986. Brain evolution in Mesozoic mammals. In Vertebrates, Phylogeny, and Philosophy. Contributions to Geology, University of Wyoming, Special Paper 3, eds. K.M. Flanagan, and J.A. Lillegraven, 21–34.

  • Kielan-Jaworowska, Z. 1997. Characters of multituberculates neglected in phylogenetic analyses of early mammals. Lethaia 29: 249–266.

    Article  Google Scholar 

  • Kielan-Jaworowska, Z., R.L. Cifelli, and Z.-X. Luo. 2004. Mammals from the Age of Dinosaurs: Origin, Evolution, and Structure. New York: Columbia University Press.

    Google Scholar 

  • Kielan-Jaworowska, Z., and T.E. Lancaster. 2004. A new reconstruction of multituberculate endocranial casts and encephalization quotient of Kryptobaatar. Acta Palaeontologica Polonica 49: 177–188.

    Google Scholar 

  • Krause, D.W., and Z. Kielan-Jaworowska. 1993. The endocranial cast and encephalization quotient of Ptilodus (Multituberculata, Mammalia). Palaeovertebrata 22: 99–112.

    Google Scholar 

  • Kuhn, H., and U. Zeller. 1987. The cavum epiptericum in monotremes and therian mammals. In Morphogenesis of the mammalian skull, ed. U. Zeller, and H. Kuhn, 51–70. Berlin: Parey.

    Google Scholar 

  • Liu, J., and P. Olsen. 2010. The phylogenetic relationships of Eucynodontia (Amniota: Synapsida). Journal of Mammalian Evolution 17: 151–176.

    Google Scholar 

  • Loo, Y.T. 1930. The forebrain of the opossum, Didelphis virginiana. Journal of Comparative Neurology 51: 13–64.

    Article  Google Scholar 

  • Luo, Z.-X., A.W. Crompton, and A.-L. Sun. 2001. A new mammaliaform from the early Jurassic and evolution of mammalian characteristics. Science 292: 1535–1540.

    Article  Google Scholar 

  • Luo, Z.-X., Z. Kielan-Jaworowska, and R.L. Cifelli. 2002. In quest for a phylogeny of Mesozoic mammals. Acta Palaeontologica Polonica 47: 1–78.

    Google Scholar 

  • Luo, Z.-X., and J.R. Wible. 2005. A late Jurassic digging mammal and early mammalian diversity. Science 308: 103–107.

    Article  Google Scholar 

  • Macrini, T.E., C. Muizon, R.L. Cifelli, and T. Rowe. 2007a. Digital cranial endocast of Pucadelphys andinus, a Paleocene metatherian. Journal of Vertebrate Paleontology 27: 99–107.

    Article  Google Scholar 

  • Macrini, T.E., G.W. Rougier, and T. Rowe. 2007b. Description of a cranial endocast from the fossil mammal Vincelestes neuquenianus (Theriiformes) and its relevance to the evolution of endocranial characters in therians. The Anatomical record 290(7): 875–892.

    Article  Google Scholar 

  • Macrini, T.E., T. Rowe, and M. Archer. 2006. Description of a cranial endocast from a fossil platypus, Obdurodon dicksoni (Monotremata, Ornithorhynchidae), and the relevance of endocranial characters to monotreme monophyly. Journal of Morphology 267: 1000–1015.

    Article  Google Scholar 

  • Maier, W. 1987. The ontogenetic development of the orbitotemporal region of the skull of Monodelphis domestica (Didelphidae, Marsupialia), and the problem of the mammalian alisphenoid. Mammalia Depicta 13: 71–90.

    Google Scholar 

  • Nieuwenhuys, R., H.J. Donkelaar, and C. Nicholson. 1998. The central nervous system of vertebrates. Berlin: Springer.

    Book  Google Scholar 

  • Niimura, Y. 2009. On the origin and evolution of vertebrate olfactory receptor genes: comparative genome analysis among 23 chordate species. Genome Biology and Evolution 1: 34–44.

    Article  Google Scholar 

  • Novacek, M.J. 1986. The skull of leptictid insectivorans and the higher-level classification of eutherian mammals. Bulletin of the American Museum of Natural History 183(1): 1–111.

    Google Scholar 

  • Novacek, M.J. 1993. Mammalian phylogeny: morphology and molecules. Trends in Ecology and Evolution 8(9): 339–340.

    Article  Google Scholar 

  • Presley, R. 1980. The braincase in Recent and Mesozoic therapsids. Mémoires, Société Géologique de France N.S., 139: 159–162.

  • Quiroga, J.C. 1979. The brain of two mammal-like reptiles (Cynodontia- Therapsida). Journal für Hirnforschung 20: 341–350.

    Google Scholar 

  • Quiroga, J.C. 1980a. Sobre un molde endocraneano del cinodonte Probainognathus jenseni Romer, 1970 (Reptilia, Therapsida), de la Formación Ischichuca (Triasico Medio), La Rioja, Argentina. Ameghiniana 17: 181–190.

    Google Scholar 

  • Quiroga, J.C. 1980b. The brain of the mammal-like reptile Probainognathus jenseni (Therapsida, Cynodontia). A correlative paleo-neoneurological approach to the neocortex at the reptile-mammal transition. Journal für Hirnforschung 21: 299–336.

    Google Scholar 

  • Quiroga, J.C. 1980c. Descripción de los moldes endocraneanos de dos Cinodontes (Reptilia–Therapsida) de Los Chañares–Triassico medio–de la Provincia de La Rioja (Argentina). Notas sobre al sistema vascular intracraneano y relaciones con los moldes dde otros Cinodontes en función de la morfología de los más antiguos moldes mamalianos conocidos. In II Congresso Argentino de Paleontología y Bioestratigrafía y I Congreso Latinoamericano De Paleontología. Actas, 103–122. Buenos Aires.

  • Quiroga, J.C. 1984. The endocranial cast of the advanced mammal-like reptile Therioherpeton cargnini (Therapsida- Cynodontia) from the Middle Triassic of Brazil. Journal für Hirnforschung 25: 285–290.

    Google Scholar 

  • Radinsky, L. 1968a. A new approach to mammalian cranial analysis, illustrated by examples of prosimian primates. Journal of Morphology 124: 167–180.

    Article  Google Scholar 

  • Radinsky, L. 1968b. Evolution of somatic sensory specialization in otter brains. Journal of Comparative Neurology 134: 495–505.

    Article  Google Scholar 

  • Radinsky, L. 1973a. Are stink badgers skunks? Implications of neuroanatomy for mustelid phylogeny. Journal of Mammalogy 54: 585–593.

    Article  Google Scholar 

  • Radinsky, L. 1973b. Evolution of the canid brain. Brain, Behavior and Evolution 7: 169–202.

    Article  Google Scholar 

  • Radinsky, L. 1976. The brain of Mesonyx, a middle Eocene mesonychid condylarth. Fieldiana Geology 33: 323–337.

    Google Scholar 

  • Radinsky, L. 1977. Brains of early carnivores. Paleobiology 3: 333–349.

    Google Scholar 

  • Radinsky, L. 1981. Brain evolution in extinct South American ungulates. Brain, Behavior and Evolution 18: 169–187.

    Article  Google Scholar 

  • Rodrigues, P.G. 2005. Endotermia em cinodontes não-mamalianos: a busca por evidências osteológicas. 133p Dissertação (Mestrado)—Universidade Federal do Rio Grande do Sul, Instituto de Geociências, Porto Alegre, RS. http://www.lume.ufrgs.br/bitstream/handle/10183/6179/000526534.pdf. Accessed 2 Aug 2013.

  • Rodrigues, P.G., and C.L. Schultz. 2005. The potential use of C.T. scan in the study of the cranial cavities of vertebrate fossils: an example with south american cynodonts In II Congresso Latino-Americano de Paleontologia de Vertebrados, 2005, Rio de Janeiro. Boletim de Resumos, 231–231. Rio de Janeiro: Museu Nacional.

  • Rodrigues, P.G., C.L. Schultz, and M.B. Soares. 2006. A comparative study of the cranial cavities of South American cynodonts from Triassic through CT scan: physiological and evolutionary implications In XXII Jornadas Argentinas de Paleontología de Vertebrados. Libro de resúmenes, 32–32. San Juan.

  • Rodrigues, P.G, Ruf, I., and C.L. Schultz. 2013. Digital reconstruction of the otic region and inner ear of the non-mammalian cynodont Brasilitherium riograndensis (Late Triassic, Brazil) and its relevance to the evolution of the mammalian ear. Journal of Mammalian Evolution. http://link.springer.com/article/10.1007/s10914-012-9221-2. Accessed 2 Aug 2013 (in press).

  • Roth, J.J., Roth, E.C., and N. Hotton III. 1986. The parietal foramen eye: their function and fate in therapsidds. In The Ecology and Biology of Mammal-like Reptiles, eds. N. Hotton III, P.B. Maclean, J.J. Roth, and E.C. Roth, 173–184. Washington, DC: Smithsonian Institute Press.

  • Rougier, G.W., and J.R. Wible. 2006. Major changes in the ear region and basicranium of early mammals. In Amniote Paleobiology: Phylogenetic and Functional Perspectives on the Evolution of Mammals, Birds and Reptiles, eds. M. Carrano, T.J. Gaudin, R. Blob, and J.R. Wible, 269–311. Chicago: University of Chicago Press.

  • Rowe, T. 1996. Coevolution of the mammalian middle ear and neocortex. Science 273: 651–654.

    Article  Google Scholar 

  • Rowe, T.B., T.P. Eiting, T.E. Macrini, and R.A. Ketcham. 2005. Organization of the olfactory and respiratory skeleton in the nose of the gray short-tailed opossum Monodelphis domestica. Journal of Mammalian Evolution 12: 303–336.

    Article  Google Scholar 

  • Rowe, T.B., T.E. Macrini, and Z.-X. Luo. 2011. Fossil evidence on origin of the mammalian brain. Science 332: 955–957.

    Article  Google Scholar 

  • Ruben, J.A., W.J. Hillenius, N.R. Geist, A. Leitch, T.D. Jones, P.J. Currie, J.R. Horner, and G. Espe III. 1996. The metabolic status of some Late Cretaceous dinosaurs. Science 273: 1204–1207.

    Article  Google Scholar 

  • Ruben, J.A., T.D. Jones, and N.R. Geist. 2003. Respiratory and reproductive paleophysiology of dinosaurs and early birds. Physiological and Biochemical Zoology 76(2): 141–164.

    Article  Google Scholar 

  • Sánchez-Villagra, M.R. 2002. The cerebellar paraflocculus and the subarcuate fossa in Monodelphis domestica and other marsupial mammals: ontogeny and phylogeny of a brain-skull interaction. Acta Theriologica 47: 1–14.

    Article  Google Scholar 

  • Silcox, M.T., C.K. Dalmyn, A. Hrenchuk, J.I. Bloch, D.M. Boyer, and P. Houde. 2011. Endocranial morphology of Labidolemur kayi (Apatemyidae, Apatotheria) and its relevance to the study of brain evolution in Euarchontoglires. Journal of Vertebrate Paleontology 31: 1314–1325.

    Article  Google Scholar 

  • Simpson, G.G. 1927. Mesozoic Mammalia. IX. The brain of Jurassic mammals. American Journal of Science 214: 259–268.

    Article  Google Scholar 

  • Simpson, G.G. 1937. Skull structure of the Multituberculata. Bulletin of the American Museum of Natural History 73: 727–763.

    Google Scholar 

  • Starck, D. 1979. Vergleichende Anatomie der Wirbeltiere auf evolutionsbiologischer Grundlage, Bd. 2, XII. Berlin: Springer.

  • Striedter, G.F. 2005. Principles of Brain Evolution. Massachusetts: Sinauer Associates, Sunderland.

    Google Scholar 

  • Ulinski, P.S. 1986. Neurobiology of the therapsid-mammal transition. In The Ecology and Biology of Mammal-like Reptiles, ed. N. Hotton III, P.B. Maclean, J.J. Roth, and E.C. Roth, 149–171. Washington, DC: Smithsonian Institution Press.

    Google Scholar 

  • Watson, D.M.S. 1913. Further notes on the skull, brain, and organs of special sense of Diademodon. The Annals and Magazine of Natural History, Series 8(12): 217–228.

    Google Scholar 

  • Wible, J.R., and G.W. Rougier. 2000. Cranial anatomy of Kryptobaatar dashzevegi (Mammalia, Multituberculata), and its bearing on the evolution of mammalian characters. Bulletin of the American Museum of Natural History 247: 1–120.

    Article  Google Scholar 

  • Zerfass, H., E.L. Lavina, C.L. Schultz, A.J.V. Garcia, U.F. Faccini, and F. Chemale Jr. 2003. Sequence-stratigraphy of continental strata of Southernmost Brazil: a contribution to Southwestern Gondwana palaeogeography and palaeoclimate. Sedimentary Geology 161: 85–105.

    Article  Google Scholar 

Download references

Acknowledgments

The fieldwork for data collection was supported by the National Geographic Society and the Ligabue Foundation of Venice (Italy). The specimen was prepared by José Fernando Bonaparte (UFRGS/NGS) and Agustin Martinelli (Sección Paleontología de Vertebrados, Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”), and was taken to Germany by JFB to be scanned at the Hochschule Aalen through a project submitted to the Alexander von Humboldt Foundation with the participation of Wolfgang Maier (Institut für Evolution und Ökologie, Eberhard-Karls-Universität Tübingen).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo Gusmão Rodrigues.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodrigues, P.G., Ruf, I. & Schultz, C.L. Study of a digital cranial endocast of the non-mammaliaform cynodont Brasilitherium riograndensis (Later Triassic, Brazil) and its relevance to the evolution of the mammalian brain. Paläontol Z 88, 329–352 (2014). https://doi.org/10.1007/s12542-013-0200-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12542-013-0200-6

Keywords

Schlüsselwörter

Navigation