Skip to main content
Log in

Thermobattery based on CNT coated carbon textile and thermoelectric electrolyte

  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

In this work, we report a thermobattery that can efficiently harvest low-grade waste heat. The thermobattery utilizes temperature dependence of ferri/ferrocyanide (Fe(CN)6 3−/Fe(CN)6 4−) redox potential and employs the porous carbon textile electrode that is coated with single-walled carbon nanotube (SWNT). Simple and scalable dipping and drying process was applied to prepare the SWNT coated textile electrodes (SWNT-CT). The SWNT coating not only decreases the sheet conductance of the textile remarkably but also provides the number of available reaction sites for thermogalvanic conversion, resulting in improving electrical outputs. The capability for power generation in the thermobattery was quantitatively investigated by measuring potential versus current curves. Discharge behavior of the thermobattery was also discussed to provide an understanding of the internal resistances that limit output electrical power.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hasnain, S. M., “Review on Sustainable Thermal Energy Storage Technologies, Part I: Heat Storage Materials and Techniques,” Energy Conversion and Management, vol. 39, no. 11, pp. 1127–1138, 1998.

    Article  Google Scholar 

  2. Starner, T., “Human-powered Wearable Computing,” IBM Systems Journal, Vol. 35, No. 3.4, pp. 618–629, 1996.

    Article  Google Scholar 

  3. Paradiso, J. A. and Starner, T., “Energy Scavenging for Mobile And Wireless Electronics,” IEEE Pervasive Computing, Vol. 4, No.1, pp. 18–27, 2005.

    Article  Google Scholar 

  4. Bhandari, B., Poudel, S. R., Lee, K. T., and Ahn, S. H., “Mathematical Modeling of Hybrid Renewable Energy System: A Review on Small Hydro-Solar-Wind Power Generation,” Int. J. Precis. Eng. Manuf.-Green Tech., vol. 1, no. 2, pp. 157–173, 2014.

    Article  Google Scholar 

  5. Bhandari, B., Lee, K. T., Lee G. Y., Cho, Y. M., and Ahn S. H., “Optimization of Hybrid Renewable Energy Power Systems: A Review,” Int. J. Precis. Eng. Manuf.-Green Tech., vol. 2, no. 1, pp. 99–112, 2015.

    Article  Google Scholar 

  6. Bell, L. E., “Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems,” Science, vol. 321, no. 5895, pp. 1457–1461, 2008.

    Article  Google Scholar 

  7. Gou, X., Xiao, H., and Yang, S., “Modeling, Experimental Study and Optimization on Low-temperature Waste Heat Thermoelectric Generator System,” Applied Energy, vol. 87, no. 10, pp. 3131–3136, 2010.

    Article  Google Scholar 

  8. Hsu, C. T., Huang, G. Y., Chu, H. S., Yu, B., and Yao, D. J., “Experiments and Simulations on Low-temperature Waste Heat Harvesting System by Thermoelectric Power Generators,” Applied Energy, vol. 88, no. 4, pp. 1291–1297, 2011.

    Article  Google Scholar 

  9. Navid, A., Vanderpool, D., Bah, A., and Pilon, L., “Towards Optimization of a Pyroelectric Energy Converter for Harvesting Waste Heat,” International Journal of Heat and Mass Transfer, vol. 53, no. 19–20, pp. 4060–4070, 2010.

    Article  MATH  Google Scholar 

  10. Niu, X., Yu, J., and Wang, S., “Experimental Study on Low-Temperature Waste Heat Thermoelectric Generator,” Journal of Power Sources, vol. 188, no. 2, pp. 621–626, 2009.

    Article  Google Scholar 

  11. Wu, C., “Analysis of Waste-Heat Thermoelectric Power Generators,” Applied Thermal Engineering, vol. 16, no. 1, pp. 63–69, 1996.

    Article  Google Scholar 

  12. Yu, C. and Chau, K. T, “Thermoelectric Automotive Waste Heat Energy Recovery using Maximum Power Point Tracking,” Energy Conversion and Management, vol. 50, no. 6, pp. 1506–1512, 2009.

    Article  Google Scholar 

  13. Ujihara, M., Carman, G. P, and Lee, D. G., “Thermal Energy Harvesting Device using Ferromagnetic Materials,” Applied Physics Letters, vol. 91, no. 9, Paper No. 093508, 2007.

    Article  Google Scholar 

  14. Nam, S. K. and Lee, S. K., “The Effect of Ti Adhesion Layer on the Thermoelectric Noise of a High Resolution Thermopile for Nanowatt Heat Flux Sensor,” Int. J. Precis. Eng. Manuf., vol. 15, no. 11, pp. 2391–2396, 2014.

    Article  Google Scholar 

  15. Kim, H., Lee, Y., and Lee, K. H., “Design of a Thermoelectric Layer for a Micro Power Generator,” Int. J. Precis. Eng. Manuf., vol. 13, no. 2, pp. 261–267, 2012.

    Article  Google Scholar 

  16. Gunawan, A., Lin, C.-H., Buttry, D. A., Mujica, V., Taylor, R. A., et al., “Liquid Thermoelectrics: Review of Recent and Limited New Data of Thermogalvanic Cell Experiments,” Nanoscale and Microscale Thermophysical Engineering, Vol. 17, No.4, pp. 304–323, 2013.

    Article  Google Scholar 

  17. Hu, R., Cola, B. A., Haram, N., Barisci, J. N., Lee, S., et al., “Harvesting Waste Thermal Energy using a Carbon-nanotube-based Thermo-electrochemical Cell,” Nano Letters, vol. 10, no. 3, pp. 838–846, 2010.

    Article  Google Scholar 

  18. Romano, M. S., Li, N., Antiohos, D., Razal, J. M., Nattestad, A., et al., “Carbon Nanotube-Reduced Graphene Oxide Composites for Thermal Energy Harvesting Applications,” Advanced Materials, vol. 25, no. 45, pp. 6602–6606, 2013.

    Article  Google Scholar 

  19. Kang, T. J., Fang, S., Kozlov, M. E., Haines, C. S., Li, N., et al., “Electrical Power from Nanotube and Graphene Electrochemical Thermal Energy Harvesters,” Advanced Functional Materials, vol. 22, no. 3, pp. 477–489, 2012.

    Article  MATH  Google Scholar 

  20. Bonetti, M., Nakamae, S., Roger, M., and Guenoun, P., “Huge Seebeck Coefficients in Nonaqueous Electrolytes,” The Journal of Chemical Physics, Vol. 134, No.11, pp. 114513, 2011.

    Article  Google Scholar 

  21. Kuzminskii, Y. V., Zasukha, V. A., and Kuzminskaya, G. Y., “Thermoelectric Effects in Electrochemical Systems. Nonconventional Thermogalvanic Cells,” Journal of Power Sources, vol. 52, no. 2, pp. 231–242, 1994.

    Article  Google Scholar 

  22. Abraham, T. J., MacFarlane, D. R., and Pringle, J. M., “Seebeck Coefficients in Ionic Liquids-Prospects for Thermo-Electrochemical Cells,” Chemical Communications, vol. 47, no. 22, pp. 6260–6262, 2011.

    Article  Google Scholar 

  23. Hu, L., Pasta, M., Mantia, F. L., Cui, L., Jeong, S., et al., “Stretchable, Porous, and Conductive Energy Textiles,” Nano Letters, vol. 10, no. 2, pp. 708–714, 2010.

    Article  Google Scholar 

  24. Kang, T. J., Choi, A., Kim, D. H., Jin, K., Seo, D. K., et al., “Electromechanical Properties of CNT-coated Cotton Yarn for Electronic Textile Applications,” Smart Materials and Structures. Vol. 20, No.1, Paper No. 015004, 2011.

    Article  Google Scholar 

  25. Jiang, L., Gao, L., and Sun, J., “Production of Aqueous Colloidal Dispersions of Carbon Nanotubes,” Journal of Colloid and Interface Science, vol. 260, no. 1, pp. 89–94, 2003.

    Article  Google Scholar 

  26. Kang, T. J., Yoon, J. W., Kim, D. I., Kum, S. S., Huh, Y. H., et al., “Sandwich-Type Laminated Nanocomposites Developed by Selective Dip-Coating of Carbon Nanotubes,” Advanced Materials, vol. 19, no. 3, pp. 427–432, 2007.

    Article  Google Scholar 

  27. Hu, C. Y., Xu, Y. J., Duo, S. W., Zhang, R. F., and Li, M. S. “Non-Covalent Functionalization of Carbon Nanotubes with Surfactants and Polymers,” Journal of the Chinese Chemical Society, vol. 56, no. 2, pp. 234–239, 2009.

    Article  Google Scholar 

  28. Moore, V. C., Strano, M. S., Haroz, E. H., Hauge, R. H., and Smalley, R. E., “Individually Suspended Single-walled Carbon Nanotubes in Various Surfactants,” Nano Letters, vol. 3, no. 10, pp. 1379–1382, 2003.

    Article  Google Scholar 

  29. Luo, H., Shi, Z., Li, N., Gu, Z., and Zhuang, Q., “Investigation of the Electrochemical and Electrocatalytic Behavior of Single-wall Carbon Nanotube Film on a Glassy Carbon Electrode,” Analytical Chemistry, vol. 73, no. 5, pp. 915–920, 2001.

    Article  Google Scholar 

  30. Wang, J., Li, M., Shi, Z., Li, N., and Gu, Z., “Direct Electrochemistry of Cytochrome c at a Glassy Carbon Electrode Modified with Single-wall Carbon Nanotubes,” Analytical Chemistry, vol. 74, no. 9, pp. 1993–1997, 2002.

    Article  Google Scholar 

  31. Zhao, Q., Gan, Z., and Zhuang, Q., “Electrochemical Sensors based on Carbon Nanotubes,” Electroanalysis, vol. 29, no. 9, pp. 1609–1613, 2010.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tae June Kang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bae, K.M., Yang, H.D., Tufa, L.T. et al. Thermobattery based on CNT coated carbon textile and thermoelectric electrolyte. Int. J. Precis. Eng. Manuf. 16, 1245–1250 (2015). https://doi.org/10.1007/s12541-015-0162-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-015-0162-6

Keywords

Navigation