Skip to main content
Log in

Molecular dynamics simulations of Kapitza length for argon-silicon and water-silicon interfaces

  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

A comprehensive understanding of heat conduction between two parallel solid walls separated by liquid remains incomplete in nanometer scale. In addition, the solid/liquid interfacial thermal resistance has been an important technical issue in thermal/fluid engineering such as micro electro-mechanical systems and nano electro-mechanical systems with liquid inside. Therefore, further advancements in nanoscale physics require an advanced understanding of momentum and energy transport at solid/liquid interfaces. This study employs three-dimensional molecular dynamics (MD) simulations to investigate the thermal resistance at solid/liquid interfaces. Heat conduction between two parallel silicon walls separated by a thin film of liquid water is considered. The density distribution of liquid water is discussed with the simulation results to further understanding of the dynamic properties of water near solid surfaces. Meanwhile, temperature profiles appear discontinuous between liquid and solid temperatures due to the dissimilarity of thermal transport properties of the two materials, which validates thermal resistance (or Kapitza length) at solid/liquid interfaces. MD results also investigate the temperature dependence of the Kapitza length, demonstrating that the Kaptiza lengths fluctuate around an average value and are independent of the wall temperature at solid/liquid interfaces. Our study provides useful information for the design of thermal management or heat dissipation devices across silicon/water and silicon/argon interfaces in nanoscale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a :

Lattice constant (nm)

N :

Number of molecules (liquid or solid)

σ :

Diameter of molecules (zero potential distance) (nm)

ε :

Depth of Lennard-Jones potential (eV)

ρ :

Number density

R K :

Kapitza resistance (interface thermal resistance)

L K :

Kapitza length (nm)

ΔT :

Temperature jump (K)

q :

Heat flux

∂T/∂z :

Temperature gradient

References

  1. Baxter, J., Bian, Z., Chen, G., Danielson, D., Dresselhaus, M., and et al., “Nanoscale Design to Enable the Revolution in Renewable Energy,” Energy and Environment Scence, Vol. 2, No. 6, pp. 559–588, 2009.

    Article  Google Scholar 

  2. Kapitza, P. L, “Zh. Eksp. Teor. Fiz. 11, 1,” J. Phys. USSR, Vol. 4, No. 181, 1941.

    Google Scholar 

  3. Pollack, G. L., “Kapitza Resistance,” Reviews of Modern Physics, Vol. 41, No. 1, pp. 48–81, 1969.

    Article  Google Scholar 

  4. Cahill, D. G., Ford, W. K., Goodson, K. E., Mahan, G. D., Majumdar, A., and et al., “Nanoscale Thermal Transport,” Journal of Applied Physics, Vol. 93, No. 2, pp. 793–818, 2003.

    Article  Google Scholar 

  5. Torii, D., Ohara, T., and Ishida, K., “Molecular-Scale Mechanism of Thermal Resistance at the Solid-Liquid Interfaces: Influence of Interaction Parameters Between Solid and Liquid Molecules,” Journal of Heat Transfer, Vol. 132, No. 1, pp. 012402, 2009.

    Article  Google Scholar 

  6. Goicochea, J. V., Hu, M., Michel, B., and Poulikakos, D., “Surface Functionalization Mechanisms of Enhancing Heat Transfer at Solid-Liquid Interfaces,” Journal of Heat Transfer, Vol. 133, No. 8, pp. 082401, 2011.

    Article  Google Scholar 

  7. Hu, H. and Sun, Y., “Effect of Nanopatterns on Kapitza Resistance at a Water-Gold Interface during Boiling: A Molecular Dynamics Study,” Journal of Applied Physics, Vol. 112, No. 5, pp. 053508, 2012.

    Article  MathSciNet  Google Scholar 

  8. Kim, B. H., Beskok, A., and Cagin, T., “Molecular Dynamics Simulations of Thermal Resistance at the Liquid-Solid Interface,” The Journal of Chemical Physics, Vol. 129, No. 17, pp. 174701, 2008.

    Article  Google Scholar 

  9. Kim, B. H., Beskok, A., and Cagin, T., “Thermal Interaction in Nanoscale Fluid Flow: Molecular Dynamics Simulations with Solid-Liquid Interfaces,” Microfluidics and Nanofluidics, Vol. 5, No. 4, pp. 551–559, 2008.

    Article  Google Scholar 

  10. Kim, B. H., “Thermal Resistance at a Liquid-Solid Interface Dependent on the Ratio of Thermal Oscillation Frequencies,” Chemical Physics Letters, Vol. 554, pp. 77–81, 2012.

    Article  Google Scholar 

  11. Kim, B. H., “Interface Thermal Resistance Modeling of The Silicon-Argon Interface,” Int. J. Precis. Eng. Manuf., Vol. 14, No. 6, pp. 1023–1028, 2013.

    Article  Google Scholar 

  12. Wang, J., Zheng, R., Gao, J., and Chen, G., “Heat Conduction Mechanisms in Nanofluids and Suspensions,” Nano Today, Vol. 7, No. 2, pp. 124–136, 2012.

    Article  Google Scholar 

  13. Stevens, R. J., Zhigilei, L. V., and Norris, P. M., “Effects of Temperature and Disorder on Thermal Boundary Conductance at Solid-Solid Interfaces: Nonequilibrium Molecular Dynamics Simulations,” International Journal of Heat and Mass Transfer, Vol. 50, No. 19, pp. 3977–3989, 2007.

    Article  MATH  Google Scholar 

  14. Shi, Z., Barisik, M., and Beskok, A., “Molecular Dynamics Modeling of Thermal Resistance at Argon-Graphite and Argon-Silver Interfaces,” International Journal of Thermal Sciences, Vol. 59, No. pp. 29–37, 2012.

    Article  Google Scholar 

  15. Stillinger, F. H. and Weber, T. A., “Computer Simulation of Local Order in Condensed Phases of Silicon,” Physical Review B, Vol. 31, No. 8, pp. 5262, 1985.

    Article  Google Scholar 

  16. Berendsen, H. J. C., Grigera, J. R., and Straatsma, T. P. J., “The Missing Term in Effect Pair Potential,” Journal of Physical Chemistry, Vol. 91, No. 24, pp. 6269–6271, 1987.

    Article  Google Scholar 

  17. Ryckaert, J. P., Ciccotti, G., and Berendsen, H. J. C., “Numerical Integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes,” Journal of Computational Physics, Vol. 23, No. 3, pp. 327–341, 1977.

    Article  Google Scholar 

  18. Allen, M. P. and Tildesley, D. J., “Computer Simulation of Liquids,” Oxford university press, pp. 21 and 164, 1989.

    Google Scholar 

  19. Arkles, B., “Hydrophobicity, hydrophilicity and silanes,” Paint & Coatings Industry Magazine, Vol. 22, No. 12, pp. 114–135, 2006.

    Google Scholar 

  20. Barisik, M. and Beskok, A., “Wetting Characterisation of Silicon (1,0,0) Surface,” Molecular Simulation, Vol. 39, No. 9, pp. 700–709, 2013.

    Article  Google Scholar 

  21. Barisik, M. and Beskok, A., “Temperature Dependence of Thermal Resistance at the Water/Silicon Interface,” International Journal of Thermal Sciences, Vol. 77, pp. 47–54, 2014.

    Article  Google Scholar 

  22. Barisik, M. and Beskok, A., “Boundary Treatment Effects on Molecular Dynamics Simulations of Interface Thermal Resistance,” Journal of Computational Physics, Vol. 231, No. 23, pp. 7881–7892, 2012.

    Article  Google Scholar 

  23. Nguyen, C. T., Roy, G., Gauthier, C., and Galanis, N., “Heat Transfer Enhancement using Al2O3-Water Nanofluid for an Electronic Liquid Cooling System,” Applied Thermanl Engineering, Vol. 27, No. 8–9, pp. 1501–1506, 2007.

    Article  Google Scholar 

  24. Borgelt, P., Hoheisel, C., and Stell, G., “Exact Molecular Dynamics and Kinetic Theory Results for Thermal Transport Coefficients of the Lennard-Jones Argon Fluid in a Wide of States,” Physical Review A, Vol. 42, no. 2, pp. 789–794, 1990.

    Article  Google Scholar 

  25. Muscatello, J. and Bresme, F., “A Comparision of Coulombic Interaction Methods in Non-Equilibrium Studies of Heat Transfer in Water,” Journal of Chemical Physics, Vol. 135, No. 23, pp. 234111, 2011.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bohung Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pham, A.T., Barisik, M. & Kim, B. Molecular dynamics simulations of Kapitza length for argon-silicon and water-silicon interfaces. Int. J. Precis. Eng. Manuf. 15, 323–329 (2014). https://doi.org/10.1007/s12541-014-0341-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-014-0341-x

Keywords

Navigation