Skip to main content
Log in

Crystal plasticity finite element simulation of NiTi shape memory alloy based on representative volume element

  • Research Paper
  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Crystal plasticity finite element method based on a representative volume element model, which includes the effect of grain shape and size, is combined with electron backscattered diffraction experiment in order to investigate plastic deformation of NiTi shape memory alloy during uniaxial compression at 400 °C. Simulation results indicate that the constructed representation of the polycrystal microstructure is able to effectively simulate macroscopically global stress-strain response and microscopically inhomogeneous microstructure evolution in the case of various loading directions. According to slip activity and Schmid factor in {110}<100>, {010}<100> and {110}<111> slip modes, <100> slip modes are found to play a dominant role in plastic deformation, while <111> slip mode is found to be a secondary slip mode. In addition, the simulation results are supported well by the experimental ones. With the progression of plastic deformation, the (001) [\(0\bar 10\)] texture component gradually disappears, while the γ-fiber (<111>) texture is increasingly enhanced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Benafan, R. Noebe, S. Padula, A. Garg, B. Clausen, R. Vaidyanathan, et al. Int. J. Plasticity 51, 103 (2013).

    Article  Google Scholar 

  2. A. Isalgue, C. Auguet, R. Grau, V. Torra, N. Cinca, and J. Fernandez, J. Mater. Eng. Perform. 24, 3323 (2015).

    Article  Google Scholar 

  3. Y. Liu, Acta Mater. 95, 411 (2015).

    Article  Google Scholar 

  4. E. Twohig, P. Tiernan, J. Butler, C. Dickinson, and S. Tofail, Acta Mater. 68, 140 (2014).

    Article  Google Scholar 

  5. H. M. Paranjape, S. Manchiraju, and P. M. Anderson, Int. J. Plasticity 80, 1 (2016).

    Article  Google Scholar 

  6. F. Weafer, Y. Guo, and M. Bruzzi, J. Mech. Behav. Biomed. 53, 210 (2016).

    Article  Google Scholar 

  7. L. Hu, S. Jiang, Y. Zhang, Y. Zhao, S. Liu, and C. Zhao, Intermetallics 70, 45 (2016).

    Article  Google Scholar 

  8. K. M. Armattoe, M. Haboussi, and T. B. Zineb, Int. J. Solids Struct. 51, 1208 (2014).

    Article  Google Scholar 

  9. S. Haroush, E. Priel, D. Moreno, A. Busiba, I. Silverman, Y. Gelbstein, et al. Mater. Design 83, 75 (2015).

    Article  Google Scholar 

  10. M. Ardeljan, I. J. Beyerlein, B. A. McWilliams, and M. Knezevic, Int. J. Plasticity 83, 90 (2016).

    Article  Google Scholar 

  11. L. Li, L. Shen, G. Proust, C. K. Moy, and G. Ranzi, Mat. Sci. Eng. A 579, 41 (2013).

    Article  Google Scholar 

  12. H. Sheikh, R. Ebrahimi, and E. Bagherpour, Mater. Design 109, 289 (2016).

    Article  Google Scholar 

  13. S. Manchiraju and P. M. Anderson, Int. J. Plasticity 26, 1508 (2010).

    Article  Google Scholar 

  14. L. Qiao and R. Radovitzky, J. Mech. Phys. Solids. 93, 93 (2016).

    Article  Google Scholar 

  15. C. Yu, G. Kang, and Q. Kan, J. Mech. Phys. Solids. 82, 97 (2015).

    Article  Google Scholar 

  16. R. Hill and J. Rice, J. Mech. Phys. Solids. 20, 401 (1972).

    Article  Google Scholar 

  17. Y. Huang, A User-Material Subroutine Incroporating Single Crystal Plasticity in the ABAQUS Finite Element Program, pp. 1–21, Harvard University, USA (1991).

    Google Scholar 

  18. D. Peirce, R. Asaro, and A. Needleman, Acta Metall. 30, 1087 (1982).

    Article  Google Scholar 

  19. H. Abdolvand, M. R. Daymond, and C. Mareau, Int. J. Plasticity 27, 1721 (2011).

    Article  Google Scholar 

  20. S.-Y. Jiang, Y.-Q. Zhang, Y.-N. Zhao, M. Tang, and W.-L. Yi, J. Cent. South Univ. 20, 24 (2013).

    Article  Google Scholar 

  21. R. J. Asaro, Adv. Appl. Mech. 23, 1 (1983).

    Article  Google Scholar 

  22. L. Lv and L. Zhen, Mat. Sci. Eng. A 528, 6673 (2011).

    Article  Google Scholar 

  23. O. Diard, S. Leclercq, G. Rousselier, and G. Cailletaud, Int. J. Plasticity 21, 691 (2005).

    Article  Google Scholar 

  24. P. Van Houtte, L. Delannay, and S. Kalidindi, Int. J. Plasticity 18, 359 (2002).

    Article  Google Scholar 

  25. L.-T. Li, Y. Lin, L. Li, L.-M. Shen, and D.-X. Wen, J. Mater. Eng. Perform. 24, 1294 (2015).

    Article  Google Scholar 

  26. K.-S. Zhang, J. W. Ju, Z. Li, Y.-L. Bai, and W. Brocks, Mech. Mater. 85, 16 (2015).

    Article  Google Scholar 

  27. J. Segurado and J. Llorca, Comp. Mater. Sci. 76, 3 (2013).

    Article  Google Scholar 

  28. R. Quey, P. Dawson, and F. Barbe, Comput. Method. Appl. M. 200, 1729 (2011).

    Article  Google Scholar 

  29. T. Erinosho, D. Collins, A. Wilkinson, R. Todd, and F. Dunne, Int. J. Plasticity 83, 1 (2016).

    Article  Google Scholar 

  30. M.-G. Lee, J. Wang, and P. M. Anderson, Mat. Sci. Eng. A 463, 263 (2007).

    Article  Google Scholar 

  31. M. Knezevic, I. J. Beyerlein, M. L. Lovato, C. N. Tomé, A. W. Richards, and R. J. McCabe, Int. J. Plasticity 62, 93 (2014).

    Article  Google Scholar 

  32. J. Wert, Q. Liu, and N. Hansen, Acta Mater. 45, 2565 (1997).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuyong Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, L., Jiang, S., Zhang, Y. et al. Crystal plasticity finite element simulation of NiTi shape memory alloy based on representative volume element. Met. Mater. Int. 23, 1075–1086 (2017). https://doi.org/10.1007/s12540-017-7118-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-017-7118-6

Keywords

Navigation