Skip to main content
Log in

Effects of the Selective Laser Melting manufacturing process on the properties of CoCrMo single tracks

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Selective Laser Melting (SLM) is an additive technology that produces solid parts by selectively melting thin layers of metallic powder. SLM can produce significant differences in the final properties due to the melting-consolidation phenomena of the process, which can be controlled by the appropriate parameters. Therefore, the objective of this study was to create a link between the process conditions and the resulting properties by experimenting in an own-developed SLM machine using CoCrMo powder as material. The fabricated samples were characterized by density, hardness and microstructural properties. The experimental results proved the capability of the SLM technique to build high dense samples. The hardness results gave evidence of a superior outcome compared to conventional processes. Finally, it was found that grain size was defined by scanning speed. Based on the results, a better understanding of the processing principles given by the parameters was achieved and improved fabrication quality was promoted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. D Janaki Ram, C. K. Esplin, and B. E. Stucker, J. Mater. Sci. Mater. Med. 19, 2105 (2008).

    Article  Google Scholar 

  2. L. C. Zhang, D. Klemm, J. Eckert, Y. L. Hao, and T. B. Sercomb, Scripta Mater. 65, 21 (2011).

    Article  Google Scholar 

  3. J. Delgado, L. Seren, J. Ciurana, and L. Hernández, Innovative Developments in Virtual and Physical Prototyping (eds. P. J. Bartolo), pp.499–503, CRC Press, London, UK (2011).

  4. D. Gu, Y. C. Hagedorn, W. Meiners, G. Meng, R. J. Santos Batista, K. Wissenbach, and R. Poprawe, Acta Mater 60, 3849 (2012).

    Article  Google Scholar 

  5. B. Zhang, H. Liao, and C. Coddet, Mater Des. 34, 753 (2012).

    Article  Google Scholar 

  6. M. Wehmoller, P. H. Warnke, C. Zilian, and H. Eufinger, Int. J. Comput. Assist. Radiol. Surg. 1281, 690 (2005).

    Google Scholar 

  7. S. L. Campanelli, N. Contuzzi, A. Angelastro, and A. D. Ludovico, New Trends in Technologies: Devices, Computer, Communication and Industrial Systems (Ed. M.J. Er), pp.233–252, InTech, DOI:10.5772/10432 (2010).

  8. S. Dadbakhsh, L. Hao, and N. Sewell, Rapid. Prototyping. J. 18, 241 (2012).

    Article  Google Scholar 

  9. M. Thöne, S. Leuders, A. Riemer, T. Tröster, and H. A. Richard, Proc. 22 nd Solid Freeform Fabrication Symposium, p.492, Austin, Texas, USA (2012).

    Google Scholar 

  10. D. Thomas, Ph. D. Thesis, pp.15–198, University of Wales, UK (2009).

    Google Scholar 

  11. A. V. Gusarov and I. Smurov, Phys. Procedia. 5, 381 (2010).

    Article  Google Scholar 

  12. I. Yadroitsev, P. H. Bertand, and I. Smurov, Appl. Surf. Sci. 253, 8064 (2007).

    Article  Google Scholar 

  13. X. Su and Y. Yang. J. Mater. Process. Tech. 212, 2074 (2012).

    Article  Google Scholar 

  14. J. Delgado, L. Seren, J. Ciurana, and L. Hernández, Innovative Developments in Virtual and Physical Prototyping (eds. P. J. Bartolo), pp.495–498, CRC Press, London, UK (2011).

  15. L. Thijs, F. Verhaeghe, T. Craeghs, J. V. Humbeeck, and J. P. Kruth, Acta Mater. 58, 3303 (2010).

    Article  Google Scholar 

  16. C. T. Duong, J. S. Nam, E. M. Seo, B. P. Patro, J. D. Chang, S. Park, and S. S. Lee, Proc. IME. H. J. Eng. Med. 224, 541 (2010).

    Article  Google Scholar 

  17. N. Chawla and X. Deng, Mater. Sci. Eng. A. 390, 98 (2005).

    Article  Google Scholar 

  18. P. C. Angelo and R. Subramanian, Powder Metallurgy: Science, Technology and Applications, p.144, PHI Learning Private limited, New Delhi, India (2008).

    Google Scholar 

  19. Y. Hirata, A. Hara, and I. A. Aksay, Ceram. Int. 35, 2667 (2009).

    Article  Google Scholar 

  20. K. S. W. Sing, Pure. Appl. Chem. 57, 603 (1985).

    Article  Google Scholar 

  21. H. Tan, C. K. Chua, K. F. Leong, C. M. Cheah, P. Cheang, M. S. Abu Bakar, and S. W. Cha, Biomaterials 24, 3115 (2003).

    Article  Google Scholar 

  22. S. Bose, J. Darsel, H. L. Hosick, L. Yang, and D. K. Sarkar, J. Mater. Sci. 13, 23 (2002).

    Google Scholar 

  23. S. J. Kalitaa, S. Bose, Howard L. Hosick, and A. Bandyopadhyay, Mater. Sci. Eng. C 23, 611 (2003).

    Article  Google Scholar 

  24. G. T. M. Chu, A. G. Brady, W. Miao, J. W. Halloran, S. J. Hollister, and D. Brei, Proc. The MRS Fall Meeting Symposium V: Solid Freefrom and Additive Fabrication, vol.542, pp.119–23, Boston, USA (1998).

    Google Scholar 

  25. Ö. Ilkgün, M.Sc. Thesis, pp.6–12, Middle East Technical University, Turkey (2005).

    Google Scholar 

  26. A. Simchi, Mater. Sci. Eng. A. 428, 148 (2006).

    Article  Google Scholar 

  27. P. Haasen, Physical Metallurgy, pp.3–60, Cambridge University Press, New York, USA (1996).

    Google Scholar 

  28. Q. Wang, L. Zhang, and H. Shen, Surf. Coat. Tech. 205, 2654 (2010).

    Article  Google Scholar 

  29. R. S. Kircher, A. M. Christensen, and K. W. Wurth, Proc. The International Solid Freeform Fabrication Symposium, pp.428–36, Austin, Texas, USA (2009).

    Google Scholar 

  30. R. T. Holt and W. Wallace, Failure Analysis of Some Orthopedic Implants Vol. 18397, pp.1–55, National Research Conceal Canada, Canada (1980).

    Google Scholar 

  31. B. Vandenbroucke and J. P. Kruth, Rapid. Prototyping. J. 13, 196 (2007).

    Article  Google Scholar 

  32. J. P. Kruth, M. Badrossamay, E. Yasa, J. Deckers, L. Thijs, and J. Van Humbeeck, Proc. The 16th International Symposium on Electromachining (Eds. Z. Wan Sheng and Y. Jun), Shanghai Jiaotong University Press, Shangai, China (2000).

  33. F. C. Campbell, Elements of Metallurgy and Engineering Alloys, pp.129–130, Materials Park: ASM International, USA (2008).

    Google Scholar 

  34. I. Yadroitsev, P. Krakhmalev, I. Yadroitsava, S. Johansson, and I. Smurov, J. Mater. Process. Tech. 213, 606 (2013).

    Article  Google Scholar 

  35. M. F. Ashby and D. Jones, Engineering Materials 2: An Introduction to Microstructures, Processing and Design, pp.66–70, Butterworth-Heinemann, Oxford, UK (2006).

    Google Scholar 

  36. B. Vrancken, R. Wauthle, J. P. Kruth, J. Van Humbeeck, Proc. The International Solid Freeform Fabrication Symposium, pp.393–407, Austin, Texas, USA (2013).

    Google Scholar 

  37. G. Bellefontaine, M. Res. Thesis. pp.15–113. University of Birmingham, UK (2010).

    Google Scholar 

  38. S. Miyake, Novel Materials Processing by Advanced Electromagnetic Energy Sources. pp.186–187, Elsevier Science, Oxford, UK (2005).

    Google Scholar 

  39. C. I. Nwoye, C. N. Anyakwo, E. Obidiegwu, and N. E. Nwankwo, J Miner. Mater. Charact. Eng. 10, 707 (2011).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joaquim Ciurana.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monroy, K.P., Delgado, J., Sereno, L. et al. Effects of the Selective Laser Melting manufacturing process on the properties of CoCrMo single tracks. Met. Mater. Int. 20, 873–884 (2014). https://doi.org/10.1007/s12540-014-5011-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-014-5011-0

Keywords

Navigation