Skip to main content
Log in

RETRACTED ARTICLE: A study on the microstructure of precipitation strengthened B2-ordered NiAl

  • Published:
Metals and Materials International Aims and scope Submit manuscript

This article was retracted on 12 May 2015

Abstract

Microstructural control to produce a multiphase structure and there by improve the high temperature strength as well as low temperature ductility of intermetallics has received much attention. A transmission electron microscopy investigation has been performed in the present work on the precipitation of supersaturated B2-ordered (Ni,Co)Al and α-Cr in B2-ordered β-NiAl with different stoichiometry. Precipitation behavior and hardening were investigated by measuring the hardness variation. The hardness of (Ni,Co)Al and β-NiAl increases appreciably by the fine precipitation of (Ni,Co)2Al and α-Cr, and overage softening occurs after prolonged aging. In the case of B2-ordered (Ni,Co)Al, the (Ni,Co)2Al phase has a hexagonal structure and takes a rod-like shape with the long axis of the rod parallel to the 〈111〉 directions of the B2 matrix. By aging at temperatures below 873 K, a long period superlattice structure appears in the hexagonal (Ni,Co)2Al phase. The orientation relationship between the (Ni,Co)2Al precipitates and the B2-(Ni,Co)Al matrix is found to be (0001)p//(111)B2 and [\(\bar 1\)2\(\bar 1\)0]p//[\(\bar 1\)10]B2, where the suffixes p and B2 denote the (Ni,Co)2Al precipitate and the B2-(Ni,Co)Al matrix, respectively. (Ni,Co)Al hardens appreciably by fine precipitation of the (Ni,Co)2Al phase. On the other hand, in the case of B2-NiAl, perfect lattice coherency is retained at the interfaces between the α-Cr particles and the matrix during the initial stage of aging. After prolonged aging, a loss of coherency occurs by the attraction of matrix dislocations to the particle/matrix interface followed by climbing around the particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Refernces

  1. T. I. Khan, T. Ohmi and M. Kudoh, Mater. Trans. 42, 263 (2001).

    Article  Google Scholar 

  2. S. H. Jeong and D. B. Lee, Met. Mater. Int. 4, 1077 (1998).

    Article  Google Scholar 

  3. S. O. Han and C. S. Han, Kor. J. Met. Mater. 48, 1070 (2010).

    Google Scholar 

  4. K. Ishida, R. Kainuma, N. Ueno and T. Nishizawa, Metall. Trans. A 22A, 441 (1991).

    Article  Google Scholar 

  5. K. B. Kim, S. M. Lee, D. H. Kim, and K. T. Hong, J. Kor. Inst. Met. & Mater. 37, 794 (1999).

    Google Scholar 

  6. H. Y. Lee, T. J. Kim, and Y. J. Cho, J. Kor. Inst. Met. & Mater. 47, 267 (2009).

    Google Scholar 

  7. H. Bei, A. Gali, and E. George, Mater. Res. Soc., 1124 (2006).

  8. C. S. Choi and I. S. Chung, J. Kor. Inst. Met. & Mater. 37, 170 (1999).

    Google Scholar 

  9. B. Campillo, O. Alvarez, and C. Gonzalez, Advanced Materials and Processing, p. 863 (2001).

  10. S. H. Song, S. H. Kim, M. H. Oh, and D. M. Wee, J. Kor. Inst. Met. & Mater. 41, 813 (2003).

    Google Scholar 

  11. K. Ishida, R. Kainuma, and H. Ohtani, Mechanical Properties and Phase Transformations of Multiphase Intermetallic Alloys, p. 77 (1995).

  12. M. Hubert-Protopotescu and H. Hubert, Ternary Alloys, VCH, Weinheim, 4, 234 (1991).

    Google Scholar 

  13. T. Hong and A. J. Freeman, High Temperature Ordered Intermetallic Alloys II, Mater. Res. Soc. Sympo. Proc. 133, 573 (1989).

    Google Scholar 

  14. C. A. Hippsley, M. Strangwood, and J. H. DeVan, Acta metall. mater. 38, 2393 (1990).

    Article  Google Scholar 

  15. H. E. Cline, J. L. Walter, E. F. Kock, and L. M. Osika, Acta metall. mater. 19, 905 (1971).

    Google Scholar 

  16. J. L. Walter, H. E. Cline, and E. F. Kock, Trans. Metall. Soc. AIME 245, 2073 (1969).

    Google Scholar 

  17. R. D. Field, D. F. Lahman, and R. Darolia, Acta metall. mater. 39, 2961 (1991).

    Article  Google Scholar 

  18. R. D. Field, D. F. Lahman, and R. Darolia, Mater. Res. Soc. Sympo. Int. Proc. Pittsburg, MRS. 133, 225 (1989).

    Google Scholar 

  19. P. Rogl, G. Petzow, and G. Effenberg, Ternary alloys, VCH, Weinheim, 4, 400 (1991).

    Google Scholar 

  20. I. M. Robertson and C. M. Wayman, Phill. Mag. A, 48, 421 (1983).

    Article  Google Scholar 

  21. N. V. Kataeva, S. V. Kositsyn, and A. I. Valiullin, Mater. Sci. Eng. 438-440, 312 (2006).

    Article  Google Scholar 

  22. U. D. Hangen and G. Sauthoff, Intermetallics 7, 501 (1999).

    Article  Google Scholar 

  23. F. Reynaud, J. Appl. Cryst. 9, 263 (1976).

    Article  Google Scholar 

  24. S. Muto, D. Schryvers, N. Merk, and L.E. Tanner, Acta metal. 41, 2377 (1993).

    Article  Google Scholar 

  25. R. T. Pascoe and C. W. A. Newey, J. Met. Sci. 2, 138 (1968).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Suk Han.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s12540-015-2131-0.

The editorial board of Metals and Materials International has decided to retract this article for reasons of plagiarism and redundant (duplicate) publication.

About this article

Cite this article

Oh, CS., Han, CS. RETRACTED ARTICLE: A study on the microstructure of precipitation strengthened B2-ordered NiAl. Met. Mater. Int. 17, 215–222 (2011). https://doi.org/10.1007/s12540-011-0405-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-011-0405-8

Keywords

Navigation