Skip to main content
Log in

Structure Prediction of a Novel Exo-β-1,3-Glucanase: Insights into the Cold Adaptation of Psychrophilic Yeast Glaciozyma antarctica PI12

  • Original Research Article
  • Published:
Interdisciplinary Sciences: Computational Life Sciences Aims and scope Submit manuscript

Abstract

We report a detailed structural analysis of the psychrophilic exo-β-1,3-glucanase (GaExg55) from Glaciozyma antarctica PI12. This study elucidates the structural basis of exo-1,3-β-1,3-glucanase from this psychrophilic yeast. The structural prediction of GaExg55 remains a challenge because of its low sequence identity (37 %). A 3D model was constructed for GaExg55. Threading approach was employed to determine a suitable template and generate optimal target–template alignment for establishing the model using MODELLER9v15. The primary sequence analysis of GaExg55 with other mesophilic exo-1,3-β-glucanases indicated that an increased flexibility conferred to the enzyme by a set of amino acids substitutions in the surface and loop regions of GaExg55, thereby facilitating its structure to cold adaptation. A comparison of GaExg55 with other mesophilic exo-β-1,3-glucanases proposed that the catalytic activity and structural flexibility at cold environment were attained through a reduced amount of hydrogen bonds and salt bridges, as well as an increased exposure of the hydrophobic side chains to the solvent. A molecular dynamics simulation was also performed using GROMACS software to evaluate the stability of the GaExg55 structure at varying low temperatures. The simulation result confirmed the above findings for cold adaptation of the psychrophilic GaExg55. Furthermore, the structural analysis of GaExg55 with large catalytic cleft and wide active site pocket confirmed the high activity of GaExg55 to hydrolyze polysaccharide substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Siddiqui KS, Cavicchioli R (2006) Cold-adapted enzymes. Annu Rev Biochem 75:403–433

    Article  CAS  PubMed  Google Scholar 

  2. Buzzini P, Branda E, Goretti M, Turchetti B (2012) Psychrophilic yeasts from worldwide glacial habitats: diversity, adaptation strategies and biotechnological potential. FEMS Microbiol Ecol 82(2):217–241

    Article  CAS  PubMed  Google Scholar 

  3. Buzzini P, Margesin R (2013) Cold-adapted yeasts. Springer, Berlin Heidelberg

    Google Scholar 

  4. Struvay C, Feller G (2012) Optimization to low temperature activity in psychrophilic enzymes. Int J Mol Sci 13(9):11643–11665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Orikoshi H, Baba N, Nakayama S, Kashu H, Miyamoto K, Yasuda M, Inamori Y, Tsujibo H (2003) Molecular analysis of the gene encoding a novel cold-adapted chitinase (ChiB) from a marine bacterium, Alteromonas sp. strain O-7. J Bacteriol 185(4):1153–1160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tronelli D, Maugini E, Bossa F, Pascarella S (2007) Structural adaptation to low temperatures—analysis of the subunit interface of oligomeric psychrophilic enzymes. FEBS J 274(17):4595–4608

    Article  CAS  PubMed  Google Scholar 

  7. Ramli ANM, Mahadi NM, Shamsir MS, Rabu A, Joyce-Tan KH, Murad AMA, Illias RM (2012) Structural prediction of a novel chitinase from the psychrophilic Glaciozyma antarctica PI12 and an analysis of its structural properties and function. J Comput-Aided Mol Des 26(8):947–961

    Article  CAS  PubMed  Google Scholar 

  8. Joyet P, Declerck N, Gaillardin C (1992) Hyperthermostable variants of a highly thermostable alpha-amylase. Nat Biotechnol 10(12):1579–1583

    Article  CAS  Google Scholar 

  9. Parvizpour S, Razmara J, Ramli ANM, Illias RM, Shamsir MS (2014) Structural and functional analysis of a novel psychrophilic β-mannanase from Glaciozyma antarctica PI12. J Comput-Aided Mol Des 28(6):685–698

    Article  CAS  PubMed  Google Scholar 

  10. Paredes DI, Watters K, Pitman DJ, Bystroff C, Dordick JS (2011) Comparative void-volume analysis of psychrophilic and mesophilic enzymes: structural bioinformatics of psychrophilic enzymes reveals sources of core flexibility. BMC Struct Biol 11(1):42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Aspeborg H, Coutinho PM, Wang Y, Brumer H, Henrissat B (2012) Evolution, substrate specificity and subfamily classification of glycoside hydrolase family 5 (GH5). BMC Evolut Biol 12(1):186

    Article  CAS  Google Scholar 

  12. Kulminskaya AA, Thomsen KK, Shabalin KA, Sidorenko IA, Eneyskaya EV, Savel’Ev AN, Neustroev KN (2001) Isolation, enzymatic properties, and mode of action of an exo-1,3-β-glucanase from T. viride. Eur J Biochem 268(23):6123–6131

    Article  CAS  PubMed  Google Scholar 

  13. Ueda M, Yamaki K, Goto T, Nakazawa M, Miyatake K, Sakaguchi M, Inouye K (2011) Purification and characterization of 1,3-β-d-glucanase from Eisenia foetida. Carbohydr Polym 86(1):271–276

    Article  CAS  Google Scholar 

  14. Ferrer P (2006) Revisiting the Cellulosimicrobium cellulans yeast-lytic β-1,3-glucanases toolbox: a review. Microb Cell Fact 5(1):10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. c Ooi VE, Liu F (2000) Immunomodulation and anti-cancer activity of polysaccharide-protein complexes. Curr Med Chem 7(7):715–729

    Article  Google Scholar 

  16. Cutfield SM, Davies GJ, Murshudov G, Anderson BF, Moody PC, Sullivan PA, Cutfield JF (1999) The structure of the exo-β-(1,3)-glucanase from Candida albicans in native and bound forms: relationship between a pocket and groove in family 5 glycosyl hydrolases. J Mol Biol 294(3):771–783

    Article  CAS  PubMed  Google Scholar 

  17. Taylor SC, Ferguson AD, Bergeron JJ, Thomas DY (2004) The ER protein folding sensor UDP-glucose glycoprotein–glucosyltransferase modifies substrates distant to local changes in glycoprotein conformation. Nat Struct Mol Biol 11(2):128–134

    Article  CAS  PubMed  Google Scholar 

  18. Patrick WM, Nakatani Y, Cutfield SM, Sharpe ML, Ramsay RJ, Cutfield JF (2010) Carbohydrate binding sites in Candida albicans exo-β-1,3-glucanase and the role of the Phe–Phe ‘clamp’ at the active site entrance. FEBS J 277(21):4549–4561

    Article  CAS  PubMed  Google Scholar 

  19. Izwan B, Najad-Zamirah Z, Farah-Diba A, Nor-Muhammad M, Mohd-Nazalan M, Rosli M, Abdul-Munir A (2014) Comparison of rna extraction methods for transcript analysis from the psychrophilic yeast, Glaciozyma antarctica. Malays Appl Biol 43(2):71–79

    Google Scholar 

  20. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410

    Article  CAS  PubMed  Google Scholar 

  21. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl acids Res 25(17):3389–3402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gough J, Karplus K, Hughey R, Chothia C (2001) Assignment of homology to genome sequences using a library of hidden Markov models that represent all proteins of known structure. J Mol Biol 313(4):903–919

    Article  CAS  PubMed  Google Scholar 

  23. Eswar N, Webb B, Marti-Renom MA, Madhusudhan M, Eramian D, Shen My, Pieper U, Sali A (2006) Comparative protein structure modeling using Modeller. Curr Protoc Bioinform 05:unit 5.6. doi:10.1002/0471250953.bi0506s15

    Article  Google Scholar 

  24. Biegert A, Mayer C, Remmert M, Söding J, Lupas AN (2006) The MPI bioinformatics toolkit for protein sequence analysis. Nucl Acids Res 34(suppl 2):W335–W339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Söding J, Biegert A, Lupas AN (2005) The HHpred interactive server for protein homology detection and structure prediction. Nucl Acids Res 33(suppl 2):W244–W248

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Melo F, Sali A (2007) Fold assessment for comparative protein structure modeling. Protein Sci 16(11):2412–2426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26(2):283–291

    Article  CAS  Google Scholar 

  28. Bowie JU, Luthy R, Eisenberg D (1991) A method to identify protein sequences that fold into a known three-dimensional structure. Science 253(5016):164–170

    Article  CAS  PubMed  Google Scholar 

  29. Colovos C, Yeates TO (1993) Verification of protein structures: patterns of nonbonded atomic interactions. Protein Sci Publ Protein Soc 2(9):1511

    Article  CAS  Google Scholar 

  30. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera a visualization system for exploratory research and analysis. J Comput Chem 25(13):1605–1612

    Article  CAS  PubMed  Google Scholar 

  31. DeLano WL (2002) The PyMOL molecular graphics system. DeLano Scientific LLC, San Carlos

  32. Cutfield J, Sullivan P, Cutfield S (2000) Minor structural consequences of alternative CUG codon usage (Ser for Leu) in Candida albicans exoglucanase. Protein Eng 13(10):735–738

    Article  CAS  PubMed  Google Scholar 

  33. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(1):33–38

    Article  CAS  PubMed  Google Scholar 

  34. Willard L, Ranjan A, Zhang H, Monzavi H, Boyko RF, Sykes BD, Wishart DS (2003) VADAR: a web server for quantitative evaluation of protein structure quality. Nucl Acids Res 31(13):3316–3319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hess B, Kutzner C, Van Der Spoel D, Lindahl E (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4(3):435–447

    Article  CAS  PubMed  Google Scholar 

  36. Sehnal D, Vareková RS, Berka K, Pravda L, Navrátilová V, Banás P, Ionescu C-M, Otyepka M, Koca J (2013) MOLE 2.0: advanced approach for analysis of biomacromolecular channels. J Cheminformatics 5:39

    Article  CAS  Google Scholar 

  37. Iyo AH, Forsberg CW (1999) A cold-active glucanase from the ruminal bacterium Fibrobacter succinogenes S85. Appl Environ Microbiol 65(3):995–998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Geralt M, Alimenti C, Vallesi A, Luporini P, Wüthrich K (2013) Thermodynamic stability of psychrophilic and mesophilic pheromones of the protozoan ciliate Euplotes. Biology 2(1):142–150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Herning T, Yutani K, Inaka K, Kuroki R, Matsushima M, Kikuchi M (1992) Role of proline residues in human lysozyme stability: a scanning calorimetric study combined with X-ray structure analysis of proline mutants. Biochemistry 31(31):7077–7085

    Article  CAS  PubMed  Google Scholar 

  40. Kumar S, Nussinov R (2004) Different roles of electrostatics in heat and in cold: adaptation by citrate synthase. ChemBioChem 5(3):280–290

    Article  CAS  PubMed  Google Scholar 

  41. Georlette D, Jonsson Z, Van Petegem F, Chessa JP, Van Beeumen J, Hübscher U, Gerday C (2000) A DNA ligase from the psychrophile Pseudoalteromonas haloplanktis gives insights into the adaptation of proteins to low temperatures. Eur J Biochem 267(12):3502–3512

    Article  CAS  PubMed  Google Scholar 

  42. Siddiqui KS, Poljak A, Guilhaus M, De Francisci D, Curmi PM, Feller G, D’Amico S, Gerday C, Uversky VN, Cavicchioli R (2006) Role of lysine versus arginine in enzyme cold-adaptation: modifying lysine to homo-arginine stabilizes the cold-adapted α-amylase from Pseudoalteromonas haloplanktis. Proteins Struct Funct Bioinform 64(2):486–501

    Article  CAS  Google Scholar 

  43. Galkin A, Kulakova L, Ashida H, Sawa Y, Esaki N (1999) Cold-adapted alanine dehydrogenases from two Antarctic bacterial strains: gene cloning, protein characterization, and comparison with mesophilic and thermophilic counterparts. Appl Environ Microbiol 65(9):4014–4020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kim S-Y, Hwang KY, Kim S-H, Sung H-C, Han YS, Cho Y (1999) Structural basis for cold adaptation sequence, biochemical properties, and crystal structure of malate dehydrogenase from a psychrophile Aquaspirillium arcticum. J Biol Chem 274(17):11761–11767

    Article  CAS  PubMed  Google Scholar 

  45. Xie B-B, Bian F, Chen X-L, He H-L, Guo J, Gao X, Zeng Y-X, Chen B, Zhou B-C, Zhang Y-Z (2009) Cold adaptation of zinc metalloproteases in the thermolysin family from deep sea and arctic sea ice bacteria revealed by catalytic and structural properties and molecular dynamics new insights into relationship between conformational flexibility and hydrogen bonding. J Biol Chem 284(14):9257–9269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kumar S, Nussinov R (1999) Salt bridge stability in monomeric proteins. J Mol Biol 293(5):1241–1255

    Article  CAS  PubMed  Google Scholar 

  47. Feller G, Zekhnini Z, Lamotte-Brasseur J, Gerday C (1997) Enzymes from cold-adapted microorganisms. The class C β-lactamase from the Antarctic psychrophile Psychrobacter immobilis A5. Eur J Biochem 244(1):186–191

    Article  CAS  PubMed  Google Scholar 

  48. Kingsley LJ, Wilson GL, Essex ME, Lill MA (2015) Combining structure-and ligand-based approaches to improve site of metabolism prediction in CYP2C9 substrates. Pharm Res 32(3):986–1001

    Article  CAS  PubMed  Google Scholar 

  49. Feller G (2013) Psychrophilic enzymes: from folding to function and biotechnology. Scientifica 2013(2013):28

    Article  Google Scholar 

  50. Russell RJ, Gerike U, Danson MJ, Hough DW, Taylor GL (1998) Structural adaptations of the cold-active citrate synthase from an Antarctic bacterium. Structure 6(3):351–361

    Article  CAS  PubMed  Google Scholar 

  51. Feller G (2003) Molecular adaptations to cold in psychrophilic enzymes. Cell Mol Life Sci CMLS 60(4):648–662

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge support given by the Australian Antarctic Division and the Malaysian Antarctic Research Programme (MARP) of the Academy of Science, Malaysia.

Funding

This research was supported by a research grant from the Ministry of Science Technology and Innovation (MOSTI), Malaysia under the research Grants 10-05-16-MB002 and 02-05-20-SF0007.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salimeh Mohammadi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadi, S., Parvizpour, S., Razmara, J. et al. Structure Prediction of a Novel Exo-β-1,3-Glucanase: Insights into the Cold Adaptation of Psychrophilic Yeast Glaciozyma antarctica PI12. Interdiscip Sci Comput Life Sci 10, 157–168 (2018). https://doi.org/10.1007/s12539-016-0180-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12539-016-0180-9

Keywords

Navigation