Skip to main content
Log in

Effect of Solvent Water Molecules on Human Serum Albumin Complex-Docked Paclitaxel by MM-PBSA Method

  • Original Research Article
  • Published:
Interdisciplinary Sciences: Computational Life Sciences Aims and scope Submit manuscript

Abstract

Molecular modeling on solvation effect and interaction mechanism of the water molecules in the active site of protein affect significantly the interaction between protein and ligand. Detailed influence of water molecules in the active site of human serum albumin (HSA) on its paclitaxel complex as well as their interaction is essential for clinical studies. Molecular docking of both crystal-HSA and solvated-HSA with paclitaxel was performed in the present work. The docking result shows that paclitaxel is inserted more deeply in the binding pocket of crystal-HSA than in the same site of solvated-HSA, and more intermolecular H-bonds are formed in the shrunken binding site of solvated-HSA. The favorable docking energies also reflect that solvated-HSA model is more tightly integrated with paclitaxel than crystal-HSA. According to the MD results of solvated-HSA-paclitaxel, six intermolecular H-bonds have formed at the binding site, two of them linking with the water molecules. It proves that water molecules in the binding site have affected the interaction between protein and ligand significantly. The MD results for the two complexes also suggest that the solvated protein model will lead to a rather different binding complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Hodgson J (2001) ADMET—turning chemicals into drugs. Nat Biotechnol 19(8):722–726

    Article  CAS  PubMed  Google Scholar 

  2. Jamie G, Patricia AZ, Isabelle P, Ananyo AB, Masaki O, Stephenm C (2005) Structural BASIS OF THE DRUG-BINDING SPECIFICITY OF HUMAN SERUM ALBumin. J Mol Biol 353(1):38–52

    Article  Google Scholar 

  3. Peters TJ (1996) All About albumin: biochemistry, genetics, and medical applications. Academic Press, San Diego

    Google Scholar 

  4. Carter DC, Ho JX (1994) Structure of serum albumin. Adv Protein Chem 45:153–203

    Article  CAS  PubMed  Google Scholar 

  5. Sudlow G, Birkett DJ, Wade DN (1975) The characterization of two specific drug binding sites on human serum albumin. Mol Pharmacol 11:824–832

    CAS  PubMed  Google Scholar 

  6. He XM, Carte DC (1992) Atomic structure and chemistry of human serum albumin. Nature 358(6383):209–215

    Article  CAS  PubMed  Google Scholar 

  7. Peters T Jr (1996) All about albumin: biochemistry, genetics and medical applications. Academic, Orlando, pp 79–126

    Google Scholar 

  8. Kragh-Hansen U (1981) Molecular aspects of ligand binding to serum albumin. Pharmacol Rev 33(1):17–53

    CAS  PubMed  Google Scholar 

  9. Horowitz SB, Lothsteia L, Manfredi JJ, Mellado W, Parness J, Roy SN, Schiff PB, Sorbara L, Zeheb R (1986) Taxol: mechanism of action and resistance. Ann NY Acad Sci 466(1):733–744

    Article  Google Scholar 

  10. Choy H (2001) Taxanes in combined modality therapy for solid tumors. Crit Rev Oncol Hematol 37(3):237–247

    Article  CAS  PubMed  Google Scholar 

  11. Kumar GN, Walle UK, Bhalla KN, Walle T (1993) Res. Binding of taxol to human plasma, albumin and alpha 1-acid glycoprotein. Commun Chem Pathol Pharmacol 80(3):337–344

    CAS  Google Scholar 

  12. Shi J, Votruba AR, Farokhzad OC, Langer R (2001) Nanotenchnology in drug delivery and tissue engineering: from discovery to applications. Nano Lett 10(9):3223–3230

    Article  Google Scholar 

  13. Adair JH, Parette MP, Altlnoglu E, Kester M (2010) Nanoparticulate alternatives for drug delivery. ACS Nano 4(9):4967–4970

    Article  CAS  PubMed  Google Scholar 

  14. Farokhzad OC, Langer R (2009) Impact of nanotechnology on drug delivery. ACS Nano 3(1):16–20

    Article  CAS  PubMed  Google Scholar 

  15. Kratz F, Elsadek B (2012) Clinical impact of serum proteins on drug delivery. J Control Release 161(2):429–445

    Article  CAS  PubMed  Google Scholar 

  16. Lilianna TL (2004) Paclitaxel–HSA interaction. Binding sites on HSA molecule. Bioorg Med Chem 12(12):3269–3275

    Article  Google Scholar 

  17. Purcell M, Neault JF, Tajmir-Riahi HA (2000) Interaction of taxol with human serum albumin. Biochim Biophys Acta 1478(1):61–68

    Article  CAS  PubMed  Google Scholar 

  18. Yang XL, Ye ZW, Yuan Y, Zheng ZQ, Shi JN, Ying Y (2013) Insights into the binding of paclitaxel to human serum albumin: multispectroscopic studies. Luminescence 28(3):427–434

    Article  CAS  PubMed  Google Scholar 

  19. Krisztina P, Aliaksei S, Laura B (2007) Paclitaxel binding to human serum albumin—automated docking studies. Bioorg Med Chem 15(3):1323–1329

    Article  Google Scholar 

  20. Verdonk ML, Chessari G, Cole JC, Hartshorn MJ, Murray CW, Nissink JW, Taylor RD, Taylor R (2005) Modeling water molecules in protein-ligand docking using GOLD. J Med Chem 8(20):6504–6515

    Article  Google Scholar 

  21. Pospisil P, Kuoni TL, Scapozza Folkers GJ (2002) Methodology and problems of protein-ligand docking: case study of dihydroorotate dehydrogenase, thymidine kinase, and phosphodiesterase. Recept Signal Trans Res 22:141–154

    Article  CAS  Google Scholar 

  22. Yang JM, Chen CC (2004) GEMDOCK: a generic evolutionary method for molecular docking. Proteins 55:288–304

    Article  CAS  PubMed  Google Scholar 

  23. Graaf CD, Pospisil P, Pos W, Folkers G (2005) Vermeulen, N.P.E.Binding mode prediction of cytochrome P450 and thymidine kinase protein–ligand complexes by consideration of water and rescoring in automated docking. J Med Chem 48(7):2308–2318

    Article  PubMed  Google Scholar 

  24. Graaf CD, Oostenbrink C, Keizers PHJ, Wijst TV, Jongejan A, Vermeulen NPE (2006) Catalytic site prediction and virtual screening of cytochrome P450 2D6 substrates by consideration of water and rescoring in automated docking. J Med Chem 49(8):2417–2430

    Article  PubMed  Google Scholar 

  25. Darden T, York D, Pedersen L (1993) Particle mesh Ewald—An N.Log(N) method for Ewald sums in large systems. J Chem Phys 98:10089–10092

    Article  CAS  Google Scholar 

  26. Rastelli G, Del RA, Degliesposti G, Sgobba M, Rastelli G, Del RA (2010) Fast and accurate predictions of binding free energies using MM-PBSA and MM-GBSA. Find Similar J Comput Chem 31(4):797–810

    CAS  Google Scholar 

  27. Onufriev A, Bashford D, Case DA (2004) Exploring protein native states and large-scale conformational changes with a modified generalized born model. Proteins 55(2):383–394

    Article  CAS  PubMed  Google Scholar 

  28. Zunszain PA, Ghuman J, Komatsu T, Tsuchida E, Curry S (2003) Crystal structural analysis of human serum albumin complexed with hemin and fatty acid. BMC Struct Biol 3(1):1–9

    Article  Google Scholar 

  29. Spencer CM, Faulds D (1994) Paclitaxel: a review of its pharmacodynamic and pharmacokinetic properties and therapeutic potential in the treatment of cancer. Drugs 48(5):794–847

    Article  CAS  PubMed  Google Scholar 

  30. Hornak V, Abel R, Okur A, Strockbine B, Roitberg A, Simmerling C (2006) Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins 65(3):712–725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general amber force field. J Comput Chem 25(9):1157–1174

    Article  CAS  PubMed  Google Scholar 

  32. Miyamoto S, Kollman PA (1992) SETTLE: an analytical version of the SHAKE and RATTLE algorithm for rigid water models. J Comput Chem 13(8):952–962

    Article  CAS  Google Scholar 

  33. Uberuaga BP, Anghel M, Voter AF (2004) Synchronization of trajectories in canonical molecular-dynamics simulations: observation, explanation, and exploitation. J Chem Phys 120(14):6363–6374

    Article  CAS  PubMed  Google Scholar 

  34. Sindhikara DJ, Kim S, Voter AF, Roitberg AE (2009) Bad seeds sprout perilous dynamics: stochastic thermostat induced trajectory synchronization in biomolecules. J Chem Theory Comput 5(6):1624–1631

    Article  CAS  PubMed  Google Scholar 

  35. Sitkoff D, Sharp KA, Honig B (1994) Accurate calculation of hydration free energies using macroscopic solvent models. J Phys Chem 98(7):1978–1988

    Article  CAS  Google Scholar 

  36. Case DA (1994) Normal mode analysis of protein dynamics. Curr Opin Struct Biol 4(2):285–290

    Article  CAS  Google Scholar 

  37. Liang J, Edelsbrunner H, Woodward C (1998) Anatomy of protein pockets and cavities: measurement of binding site geometry and implications for ligand design. Protein Sci 7(9):1884–1897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lee B, Richards FM (1971) The interpretation of protein structures: estimation of static accessibility. J Mol Biol 55(3):379–400

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This project is supported by the National Natural Science Foundation of China (Grant No. 51076108), Key Disciplines Program of Shanghai, China (Grant No. T0503 and P0502), the Innovation Funds for International Cooperation of Science and Technology Commission of Shanghai Municipality, China (Grant No. 12430702000), and the Natural Science Foundation of Science and Technology Commission of Shanghai Municipality, China (Grant No. 12ZR1420400), the Innovation Funds of the Shanghai Municipal Education Commission (Grant No. 14YZ092) as well as the Alliance Program in Shanghai, China. We are grateful to Prof. Alan Tunnacliffe at University of Cambridge and to Prof. Chen Chenglung at National Sun Yat-Sen University for their insights into the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daixi Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 58 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, H., Li, D., Xu, F. et al. Effect of Solvent Water Molecules on Human Serum Albumin Complex-Docked Paclitaxel by MM-PBSA Method. Interdiscip Sci Comput Life Sci 9, 205–213 (2017). https://doi.org/10.1007/s12539-016-0165-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12539-016-0165-8

Keywords

Navigation