Skip to main content

Advertisement

Log in

Herbal Lead as Ideal Bioactive Compounds Against Probable Drug Targets of Ebola Virus in Comparison with Known Chemical Analogue: A Computational Drug Discovery Perspective

  • Original Research Article
  • Published:
Interdisciplinary Sciences: Computational Life Sciences Aims and scope Submit manuscript

Abstract

Ebola is a deadly virus that has recently emerged as an enormous public health concern which causes dangerous illness with high fatality rates of 90 %. The virus is not receptive to known antivirals, and hence, there is a promising need to identify novel inhibitors to combat the disease. The present study deals with identification of potential herbal leads that probably subdue the activity of four major drug targets of Ebola virus such as VP24, VP30, VP35 and VP40 by computer-aided virtual screening. The selection of receptors was performed based on their functional roles in the disease. The drug likeliness and ADMET parameters of 150 herbal ligands were computationally predicted. Those molecules that qualified these parameters were preferred for docking studies with the protein targets. An existing chemical antiviral drug, BCX4430 was also docked and its theoretical binding energy was scrutinized. The docking studies suggested that herbal ligand Limonin demonstrated high binding properties with VP24 and VP35 (binding energy −9.7 kcal/mol). Similarly, curcumin exhibited good binding with VP30 (binding energy −9.6 kcal/mol). Further, Mahanine displayed superior interaction with VP40 (binding energy −7.7 kcal/mol). These herbal leads demonstrated better binding potential than the known chemical analogue in the computational studies. This study serves to bestow paramount information for further experimental studies concerning the utility of herbal ligands as probable lead molecules against Ebola viral targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Shah R, Panda PK, Patel P, Panchal H (2015) Pharmacophore based virtual screening and molecular docking studies of inherited compounds against Ebola virus receptor proteins. World J Pharm Pharm Sci 4:1268–1282

    CAS  Google Scholar 

  2. Brown CS, Lee MS, Leung DW, Wang T, Xu W, Luthra P, Amarasinghe GK (2014) In-silico derived small molecules bind the filovirus VP35 protein and inhibit its polymerase cofactor activity. J Mol Biol 426:2045–2058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Raj U, Varadwaj PK (2015) Flavonoids as multi-target inhibitors for proteins associated with Ebola virus: in silico discovery using virtual screening and molecular docking studies. Interdiscip Sci Comput Life Sci 7:1–10

    Article  CAS  Google Scholar 

  4. Beer B, Kurth R, Bukreyev A (1999) Characteristics of filoviridae: Marburg and Ebola viruses. Naturwissenschaften 86:8–17

    Article  CAS  PubMed  Google Scholar 

  5. Hoenen T, Jung S, Herwig A, Groseth A, Becker S (2010) Both matrix proteins of Ebola virus contribute to the regulation of viral genome replication and transcription. Virology 403:56–66

    Article  CAS  PubMed  Google Scholar 

  6. Saphire EO, Lee JE, Fusco ML, Hessell AJ, Oswald WB, Burton DR (2008) Structure of the Ebola virus glycoprotein bound to an antibody from a human survivor. Nature 454:177–182

    Article  PubMed  PubMed Central  Google Scholar 

  7. Leung DW, Prins KC, Basler CF, Amarasinghe GK (2010) Ebolavirus VP35 is a multifunctional virulence factor. Virulence 1:526–531

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ebihara H, Kobasa D, Takada A, Jones S, Theriault S, Neumann G (2006) Molecular determinants of Ebola virus virulence in mice. PLoS Pathog 2:e73

    Article  PubMed  PubMed Central  Google Scholar 

  9. Muhlberger E, Weik M, Volchkov VE, Klenk HD, Becker S (1999) Comparison of the transcription and replication strategies of Marburg virus and Ebola virus by using artificial replication systems. J Virol 73:2333–2342

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Weik M, Modrof J, Klenk HD, Becker S, Muhlberger E (2002) Crystal structure of the C-terminal domain of Ebola virus VP30 reveals a role in transcription and nucleocapsid association. J Virol 76:8532–8539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Omotuyi IO (2015) Ebola virus envelope glycoprotein derived peptide in human Furin-bound state: computational studies. J Biomol Struct Dyn 33:461–470

    Article  CAS  PubMed  Google Scholar 

  12. Ahmad I, Beg AZ (2001) Antimicrobial and phytochemical studies on 45 Indian medicinal plants against multi-drug resistant human pathogens. J Ethnopharmacol 74:113–123

    Article  CAS  PubMed  Google Scholar 

  13. Kuntz ID (1992) Structure-based strategies for drug design and discovery. Science 257:1078–1082

    Article  CAS  PubMed  Google Scholar 

  14. Berman HM, Battistuz T, Bhat TN, Bluhm WF, Bourne PE, Burkhardt K, Zardecki C (2002) The protein data bank. Biol Crystallogr 58:899–907

    Article  Google Scholar 

  15. Gomis-Rüth FX, Dessen A, Timmins J, Bracher A, Kolesnikowa L, Becker S, Klenk H, Weissenhorn W (2003) The matrix protein VP40 from Ebola virus octamerizes into pore-like structures with specific RNA binding properties. Structure 11:423–433

    Article  PubMed  Google Scholar 

  16. Hartlieb B, Muziol T, Weissenhorn W, Becker S (2007) Crystal structure of the C-terminal domain of Ebola virus VP30 reveals a role in transcription and nucleocapsid association. Proc Natl Acad Sci USA 104:624–629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Binning JM, Wang T, Luthra P, Shabman RS, Borek DM, Liu G, Leung DW, Basler CF, Amarasinghe GK (2013) Development of RNA aptamers targeting Ebola virus VP35. Biochemistry 52:8406–8419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Edwards MR, Johnson B, Mire CE, Xu W, Shabman RS, Speller LN, Basler CF, Daisy WL, Geisbert TW, Amarasinghe GK (2014) The Marburg virus VP24 protein interacts with Keap1 to activate the cytoprotective antioxidant response pathway. Cell Rep 6:1017–1025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK—a program to check the stereochemical quality of protein structures. J App Cryst 26:283–291

    Article  CAS  Google Scholar 

  20. Kristian R (2005) Introduction to PyMol. DeLano scientific LLC, South San Francisco

    Google Scholar 

  21. Dundas J, Ouyang Z, Tseng J, Binkowski A, Turpaz Y, Liang J (2006) CASTp: computed atlas of surface topography of proteins with structural and topographical mapping of functionally annotated residues. Nucl Acids Res 34:W116–W118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31:455–461

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Gupta P, Yadav DK, Siripurapu KB, Palit G, Maurya R (2007) Constituents of Ocimum sanctum with Antistress activity. J Nat Prod 70:1410–1416

    Article  CAS  PubMed  Google Scholar 

  24. Buzzini P, Arapitsas P, Goretti M, Branda E, Turchetti B, Pinelli P, Ieri F, Romani A (2008) Antimicrobial and antiviral activity of hydrolysable tannins. Mini Rev Med Chem 8:1179–1187

    Article  CAS  PubMed  Google Scholar 

  25. El-Hawary SS, El-Tantawy ME, Rabeh MA, Badr WK (2013) Chemical composition and biological activities of essential oils of Azadirachta indica A. Juss. Int J Appl Res Nat Prod 6:33–42

    Google Scholar 

  26. Goodman JL (2014) Studying “secret serums”—toward safe, effective Ebola treatments. N Engl J Med 371:1086–1089

    Article  PubMed  Google Scholar 

  27. Bolton EE, Wang Y, Thiessen PA, Bryant SH (2008) PubChem: integrated platform of small molecules and biological activities. Annu Rep Comput Chem 4:217–241

    Article  CAS  Google Scholar 

  28. Warren TK, Wells J, Panchal RG, Stuthman KS, Garza NL, Van Tongeren SA, Bavari S, Dong L, Retterer CJ, Eaton BP, Pegoraro G, Honnold S, Bantia S, Kotian P, Chen X, Taubenheim BR, Welch LS, Minning DM, Babu YS, Sheridan WP (2014) Protection against filovirus diseases by a novel broad-spectrum nucleoside analogue BCX4430. Nature 508:402–405

    Article  CAS  PubMed  Google Scholar 

  29. Spessard GO (1998) ACD Labs/LogP dB 3.5 and ChemSketch 3.5. J Chem Inf Comp Sci 38:1250–1253

    Article  CAS  Google Scholar 

  30. Lipinski CA (2004) Lead-and drug-like compounds: the rule-of-five revolution. Drug Discov Today Technol 1:337–341

    Article  CAS  PubMed  Google Scholar 

  31. Ghose AK, Herbertz T, Salvino JM, Mallamo JP (2006) Knowledge-based chemoinformatic approaches to drug discovery. Drug Discov Today 11:1107–1114

    Article  CAS  PubMed  Google Scholar 

  32. Sneader W (1990) Chronology of drug introductions. Compr Med Chem 1:7–80

    CAS  Google Scholar 

  33. Veber DF, Johnson SR, Cheng HY, Smith BR, Ward KW, Kopple KD (2002) Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem 45:2615–2623

    Article  CAS  PubMed  Google Scholar 

  34. Averbukh I, Ben-Zvi D, Mishra S, Barkai N (2014) Scaling morphogen gradients during tissue growth by a cell division rule. Development 141:2150–2156

    Article  CAS  PubMed  Google Scholar 

  35. Clark DE (2003) In-silico prediction of blood–brain barrier permeation. Drug Discov Today 8:927–933

    Article  CAS  PubMed  Google Scholar 

  36. Bickerton GR, Paolini GV, Besnard J, Muresan S, Hopkins AL (2012) Quantifying the chemical beauty of drugs. Nat Chem 4:90–98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Leeson PD, Davis AM, Steele J (2004) Drug-like properties: guiding principles for design–or chemical prejudice? Drug Discov Today Technol 1:189–195

    Article  CAS  PubMed  Google Scholar 

  38. Cheng F, Li W, Zhou Y, Shen J, Wu Z, Liu G, Lee PW, Tang Y (2012) admetSAR: a comprehensive source and free tool for assessment of chemical ADMET properties. J Chem Inf Model 52:3099–3105

    Article  CAS  PubMed  Google Scholar 

  39. Liu R, Sun H, So SS (2001) Development of quantitative structure-property relationship models for early ADME evaluation in drug discovery. 2. Blood-brain barrier penetration. J Chem Inf Comp Sci 41:1623–1632

    Article  CAS  Google Scholar 

  40. Klopman G, Stefan LR, Saiakhov RD (2002) ADME evaluation: 2. A computer model for the prediction of intestinal absorption in humans. Eur J Pharm Sci 17:253–263

    Article  CAS  PubMed  Google Scholar 

  41. Castillo-Garit JA, Marrero-Ponce Y, Torrens F, García-Domenech R (2008) Estimation of ADME properties in drug discovery: predicting Caco-2 cell permeability using atom-based stochastic and non-stochastic linear indices. J Pharm Sci 97:1946–1976

    Article  CAS  PubMed  Google Scholar 

  42. Avdeef A, BoxK J, Comer JEA, Hibbert C, Tam KY (1998) pH-Metric logP 10. Determination of liposomal membrane-water partition coefficients of lonizable drugs. Pharm Res 15:209–215

    Article  CAS  PubMed  Google Scholar 

  43. Hou TJ, Xia K, Zhang W, Xu XJ (2004) ADME evaluation in drug discovery. 4. Prediction of aqueous solubility based on atom contribution approach. J Chem Inf Comput Sci 44:266–275

    Article  CAS  PubMed  Google Scholar 

  44. Ames BN (1992) Too many rodent carcinogens: mitogenesis increases mutagenesis. Ration Read Environ Concerns 249:181

    Google Scholar 

  45. Struck S, Schmidt U, Gruening B, Jaeger IS, Hossbach J, Preissner R (2008) Toxicity versus potency: elucidation of toxicity properties discriminating between toxins, drugs and natural compounds. Genome Inform 20:231–242

    PubMed  Google Scholar 

  46. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDock Tools4: automated docking with selective receptor flexibility. J Comput Chem 30:2785–2791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Liang J, Edelsbrunner H, Woodward C (1998) Anatomy of protein pockets and cavities: measurement of binding site geometry and implications for ligand design. Protein Sci 7:1884–1897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Vasanthanathan P, Taboureau O, Oostenbrink C, Vermeulen NP, Olsen L, Jørgensen FS (2009) Classification of cytochrome P450 1A2 inhibitors and non-inhibitors by machine learning techniques. Drug Metab Dispos 37:658–664

    Article  CAS  PubMed  Google Scholar 

  49. Lynch T, Price A (2007) The effect of cytochrome P450 metabolism on drug response, interactions, and adverse effects. Am Fam Physician 76:391–396

    PubMed  Google Scholar 

  50. Nair PPS, Chandrashekarappa KKH, Masagalli JN, Nagaraja P, Mahadevan KM (2014) Toxicity and molecular docking studies of tetrahydroquinolines against microbial, cancer, retinoic acid receptor, inflammatory, cholesterol ester transferases and parasitic protein receptors toxicity and molecular docking studies of tetrahydroquinolines AG. Int J Pharm Pharm Sci 7:448–459

    Google Scholar 

  51. Hulo C, de Castro E, Masson P, Bougueleret L, Bairoch A, Xenarios I, Le Mercier P (2011) ViralZone: a knowledge resource to understand virus diversity. Nucl Acids Res 39:576–582

    Article  Google Scholar 

  52. Balestrieri E, Pizzimenti F, Ferlazzo A, Giofrè SV, Iannazzo D, Piperno A, Macchi B, Romeo R, Mastino A, Chiacchio MA (2011) Antiviral activity of seed extract from Citrus bergamia towards human retroviruses. Bioorg Med Chem 19:2084–2089

    Article  CAS  PubMed  Google Scholar 

  53. Jones KE, Patel NG, Levy MA, Storeygard A, Balk D, Gittleman JL, Daszak P (2008) Global trends in emerging infectious diseases. Nature 451:990–993

    Article  CAS  PubMed  Google Scholar 

  54. Iranshahy M, Iranshahi M (2011) Traditional uses, phytochemistry and pharmacology of asafoetida (Ferula assa-foetida oleo-gum-resin)—a review. J Ethnopharmacol 134:1–10

    Article  CAS  PubMed  Google Scholar 

  55. Lee CL, Chiang LC, Cheng LH, Liaw CC, Abd El-Razek MH, Chang FR, Wu YC (2009) Influenza A (H1N1) antiviral and cytotoxic agents from Ferula assa-foetida. J Nat Prod 72:1568–1572

    Article  CAS  PubMed  Google Scholar 

  56. Mahajanakatti AB, MurthyG Sharma N, Skariyachan S (2014) Exploring inhibitory potential of Curcumin against various cancer targets by in silico virtual screening. Interdiscip Sci 6:13–24

    Article  CAS  PubMed  Google Scholar 

  57. Ajazuddin Alexander A, Qureshi A, Kumari L, Vaishnav P, Sharma M, Saraf S (2014) Role of herbal bioactives as a potential bioavailability enhancer for active pharmaceutical ingredients. Fitoterapia 97:1–14

    Article  CAS  PubMed  Google Scholar 

  58. Zandi K, Ramedani E, Mohammadi K, Tajbakhsh S, Deilami I, Rastian Z, Fouladvand M, Yousefi F, Farshadpour F (2010) Evaluation of antiviral activities of curcumin derivatives against HSV-1 in Vero cell line. Nat Prod Commun 5:1935–1938

    CAS  PubMed  Google Scholar 

  59. Mazumder A, Raghavan K, Weinstein J, Kohn KW, Pommier Y (1995) Inhibition of human immunodeficiency virus type-1 integrase by curcumin. Biochem Pharmacol 49:1165–1170

    Article  CAS  PubMed  Google Scholar 

  60. Dineshkumar B, Mitra A, Mahadevappa M (2010) Antidiabetic and hypolipidemic effects of mahanimbine (carbazole alkaloid) from Murraya koenigii (rutaceae) leaves. Int J Phytomed 2:22–30

    CAS  Google Scholar 

  61. Sajish M, Schimmel P (2015) A human tRNA synthetase is a potent PARP1-activating effector target for resveratrol. Nature 519:370–373

    Article  CAS  PubMed  Google Scholar 

  62. Campagna M, Rivas C (2010) Antiviral activity of resveratrol. Biochem Soc T38:50

    Article  Google Scholar 

  63. Hartman AL, Bird BH, Towner JS, Antoniadou ZA, Zaki SR, Nichol ST (2008) Inhibition of IRF-3 activation by VP35 is critical for the high level of virulence of Ebola virus. J Virol 82:2699–2704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Sahebkar A (2010) Biological activities of essential oils from the genus Ferula (Apiaceae). Asian Biomed (Res Rev News) 4:835

    CAS  Google Scholar 

  65. Ghannadi A, Fattahian K, Shokoohinia Y, Behbahani M, Shahnoush A (2014) Anti-viral evaluation of sesquiterpene coumarins from Ferula assa-foetida against HSV-1. Iran J Pharm Res 13:523

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Nagappan T, Ramasamy P, Wahid MEA, Segaran TC, Vairappan CS (2011) Biological activity of carbazole alkaloids and essential oil of Murraya koenigii against antibiotic resistant microbes and cancer cell lines. Molecules 16:9651–9664

    Article  CAS  PubMed  Google Scholar 

  67. Marston HD, Folkers GK, Morens DM, Fauci AS (2014) Emerging viral diseases: confronting threats with new technologies. Sci Transl Med 6:253ps10

    Article  PubMed  Google Scholar 

  68. Janeba Z (2015) Development of small-molecule antivirals for Ebola. Med Res Rev 35:1175–1194

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sinosh Skariyachan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Setlur, A.S., Naik, S.Y. & Skariyachan, S. Herbal Lead as Ideal Bioactive Compounds Against Probable Drug Targets of Ebola Virus in Comparison with Known Chemical Analogue: A Computational Drug Discovery Perspective. Interdiscip Sci Comput Life Sci 9, 254–277 (2017). https://doi.org/10.1007/s12539-016-0149-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12539-016-0149-8

Keywords

Navigation