Skip to main content

Advertisement

Log in

Structural flexibility and interactions of PTP1B’s S-loop

  • Published:
Interdisciplinary Sciences: Computational Life Sciences Aims and scope Submit manuscript

Abstract

Protein-tyrosine phosphatase 1B (PTP1B) is an attractive drug target for type II diabetes and obesity. The structural motions of its S-loop play crucial roles in WPD-loop closure that is essential for the catalytic mechanism of this protein. In the current studies, totally 20 ns molecular dynamics simulations were employed on both PTP1B and its complex with inhibitors in the explicit solution surroundings with the periodic boundary conditions in order to perform detail exam on the structural flexibility of S-loop. Together with calculating RMSD values and monitoring the distances between active site and the residues in S-loop, it is found that S-loop can move towards to active site and form a tight binding pocket for substrates upon inhibitor binding. And a hydrogen bond network rearrangement was detected in this region, which may cause the transforms of both the tree-dimensional structure and the total accessible surfaces for the residues in S loop. Additionally, the second structures of Ser201 and Gly209 have huge changes for the open system, which is not detected in close system. These findings can reveal the possible mechanism of ligand recognitions and inhibitions, further providing useful information to design novel inhibitors against PTP1B and develop new treatment for type II diabetes and obesity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Appiah, E.A., Kennedy B.P. 2003. Protein tyrosine phosphatase: The quest for negative regulators of insulin action. Am J Physiol 84, E663–E670.

    Google Scholar 

  2. Barford, D., Flint, A.J., Tonks, N.K. 1994. Crystal structure of human protein tyrosine phosphatase 1B. Science 263, 1397–1404.

    Article  CAS  PubMed  Google Scholar 

  3. Berendsen, H.J.C., van der Spoel, D., van Drunen R. 1995. GROMACS: a message-passing parallel molecular dynamics implementation. Comp Phys Commun 91, 43–56.

    Article  CAS  Google Scholar 

  4. Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat T.N., Weissig, H., Shindyalov, I.N., Bourne, P.E. 2000. The protein data bank. Nucleic Acids Res 28, 235–242.

    Article  CAS  PubMed  Google Scholar 

  5. Cheng, A., Tremblay, M.L. 2004. Insulin receptor PTP: PTP1B. Handb Cell Signal 1, 729–732.

    Article  CAS  Google Scholar 

  6. Cook, W.S., Unger, R.H. 2002. Protein tyrosine phosphatase 1B: A potential leptin resistance factor of obesity. Dev Cell 2, 385–387.

    Article  CAS  PubMed  Google Scholar 

  7. Darden, T., York, D., Pedersen, L. 1993. Particel mesh Ewald: an N-log(N) method for Ewald sums in large systems. J Chem Phys 98, 10089–10092.

    Article  CAS  Google Scholar 

  8. Elchebly, M., Payette, P., Michaliszyn, E., Cromlish, W., Collins, S., Loy, A.L., Normandin, D., Cheng, A., Hagen, J.H., Chan, C.C., Ramachandran, C., Gresser, M.J., Tremblay, M.L., Kennedy, B.P. 1999. Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase 1B gene. Science 283, 1544–1548.

    Article  CAS  PubMed  Google Scholar 

  9. Gum, R.J., Gaede, L.L., Koterski, S.L., Heindel, M., Clampit, J.E., Zinker, B.A., Trevillyan, J.M., Ulrich, R.G., Jirousek, M.R., Rondinone, C.M. 2003. Reduction of protein tyrosine phosphatase 1B increases insulin-dependent signaling in ob/ob mice. Diabetes 52, 21–28.

    Article  CAS  PubMed  Google Scholar 

  10. Hess, B. 2000. Similarities between principal components of protein dynamics and random diffusion. Phys Rev E 62, 8438–8448.

    Article  CAS  Google Scholar 

  11. Hunter, T. 1995. Protein kinases and phosphatase: the Yin and Yang of protein phosphorylation and signalling. Cell 80, 225–236.

    Article  CAS  PubMed  Google Scholar 

  12. Jia, Z., Barford, D., Flint, A.J., Tonks, N.K. 1995. Structural basis for phosphotyrosine peptide recognition by protein tyrosine phosphatase 1B. Science 268, 1754–1758.

    Article  CAS  PubMed  Google Scholar 

  13. Johnson, T.O., Ermolieff, J., Jirousek, M.R. 2002. Protein tyrosine phosphatase 1B inhibitors for diabetes. Nat Rev Drug Discov 1, 696–708.

    Article  CAS  PubMed  Google Scholar 

  14. Klaman, L.D., Boss, O., Peroni, O.D., Kim, J.K., Martino, J.L., Zabolotny, J.M., Moghal, N., Lubkin, M., Kim, Y.B., Sharpe, A.H., Krongrad, A.S., Shulman, G.I., Neel, B.G., Kahn, B.B. 2000. Increased energy expenditure, decreased adiposity, and tissue-specific insulin sensitivity in protein-tyrosine phosphatase 1Bdeficient mice. Mol Cell Biol 20, 5479–5489.

    Article  CAS  PubMed  Google Scholar 

  15. Kolmodin, K., Agvist, J. 2001. The catalytic mechanism of protein tyrosine phosphatases revisited. FEBS Lett 498, 208–213.

    Article  CAS  PubMed  Google Scholar 

  16. Liu, G.X., Tan, J.Z., Niu, C.Y., Shen, J.H., Luo, X.M., Shen, X., Chen, K.X., Jiang, H.L. 2006. Molecular dynamics simulations of interaction between proteintyrosine phosphatase 1B and a bidentate inhibitor. Acta Pharm Sin 27, 100–110.

    Article  Google Scholar 

  17. Pedersen, A.K., Peters, G.H., Moller, K.B., Iversen, L.F., Kastrup, J.S. 2004. Water-molecule network and active-site flexibility of apo protein tyrosine phosphatase 1B. Acta Crystallogr Sect D 60, 1527–1534.

    Article  Google Scholar 

  18. Peters, G.H., Frimurer, T.M., Andersen, J.N., Olsen, O.H. 2000. Molecular dynamics simulations of proteintyrosine phosphatase 1B. II. Substrate-enzyme interactions and dyanmics. Biophys J 78, 2191–2200.

    Article  CAS  PubMed  Google Scholar 

  19. Stone, R.L., Dixon, J.E. 1994. Protein tyrosine phosphatases. J Biol Chem 269, 31323–31326.

    CAS  PubMed  Google Scholar 

  20. Tonks, N.K., Diltz, C.D., Fischer, E.H. 1988. Purification of the major protein tyrosine phosphatases of human placenta. J Biol Chem 263, 6715–6721.

    Google Scholar 

  21. Van Aalten, D.M.F., Bywater, R., Findlay, J.B., Hendlich, M., Hooft, R.W., Vriend, G. 1996. PRODRG: a program for generating molecular topologies and unique molecular descriptors from coordinates of small molecules. J Comput Aided Mol Des 10, 255–262.

    Article  PubMed  Google Scholar 

  22. Van Aalten, D.M.F., De Groot, B.L., Findlay, J.B.C., Berendsen, H.J.C., Amadei, A. 1997. A comparison of techniques for calculating protein essential dyanmics. J Comput Chem 18, 169–181.

    Article  Google Scholar 

  23. Wang, J.F., Wei, D.Q., Chen, C., Li, Y.X., Chou, K.C. 2008. Molecular modeling of two CYP2C19 SNPs and its implications for personalized drug design. Protein Pept Lett 15, 27–32.

    Article  PubMed  Google Scholar 

  24. Wang, J.F., Wei, D.Q., Du, H.L., Li, Y.X., Chou, K.C. 2008. Molecular modeling studies on NADP-dependent of Candida tropicallis strain xylose reductase. Open Bioinformatics J 2, 89–96.

    Google Scholar 

  25. Wang, J.F., Wei, D.Q., Li, L., Zheng, S.Y., Li, Y.X., Chou, K.C. 2007. 3D structure modeling of cytochrome P450 2C19 and its implication for personalized drug design. Biochem Biophys Res Commun 355, 513–519.

    Article  CAS  PubMed  Google Scholar 

  26. Wang, J.F., Wei, D.Q., Lin, Y., Du, H.L., Li, Y.X., Chou, K.C. 2007. Insights from modeling the 3D structure of NAD(P)H-dependent D-xylose reductase of Pichia stipitis and its binding interactions with NAD and NADP. Biochem Biophys Res Commun 359, 323–329.

    Article  CAS  PubMed  Google Scholar 

  27. Wiesmann, C., Barr, K.J., Kung, J., Zhu, J., Erlanson, D.A., Shen, W., Fahr, B.J., Zhong, M., Taylor, L., Randall, M., McDowell, R.S., Hansen, S.K. 2004. Allosteric inhibition of protein tyrosine phosphatase 1B. Nat Struct Mol Biol 11, 730–737.

    Article  CAS  PubMed  Google Scholar 

  28. Wilson, D.P., Wan, Z.K., Xu, W.X., Kirincich, S.J., Follows, B.C., McCarthy, D.J., Foreman, K., Moretto, A., Wu, J.J., Zhu, M., Binnun, E., Zhang, Y.L., Tam, M., Erbe, D.V., Tobin, J., Xu, X., Leung, L., Shilling, A., Tam, S.Y., Mansour, T.S., Lee, J. 2007. Structurebased optimization of protein tyrosine phosphatase 1B inhibitors: From the active site to the second phosphotyrosine binding site. J Med Chem 50, 4681–4698.

    Article  CAS  PubMed  Google Scholar 

  29. Zinker, B.A., Rondinone, C.M., Trevillan, J.M., Gum, R.J., Clampit, J.E., Waring, J.F., Xie, N., Wilcox, D., Jacobson, P., Frost, L., Kroeger, P.E., Reilly, R.M., Koterski, S., Opgenorth, T.J., Ulrich, R.G., Rosby, S., Butler, M., Murray, S.F., McKay, R.A., Bhanot, S., Monia, B.P., Jirousek, M.R. 2002. PTP1B antisense oligo-nucleotide lowers PTP1B protein, normalizesblood glucose, and improves insulin sensitivity in dibetic mice. Proc Natl Acad Sci USA 99, 11357–11362.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dong-Qing Wei or Yi-Xue Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, JF., Gong, K., Wei, DQ. et al. Structural flexibility and interactions of PTP1B’s S-loop. Interdiscip Sci Comput Life Sci 1, 214–219 (2009). https://doi.org/10.1007/s12539-009-0047-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12539-009-0047-4

Key words

Navigation