Skip to main content
Log in

Fast separation for the three-index assignment problem

  • Full Length Paper
  • Published:
Mathematical Programming Computation Aims and scope Submit manuscript

Abstract

A critical step in a cutting plane algorithm is separation, i.e., establishing whether a given vector x violates an inequality belonging to a specific class. It is customary to express the time complexity of a separation algorithm in the number of variables n. Here, we argue that a separation algorithm may instead process the vector containing the positive components of x,  denoted as supp(x),  which offers a more compact representation, especially if x is sparse; we also propose to express the time complexity in terms of |supp(x)|. Although several well-known separation algorithms exploit the sparsity of x,  we revisit this idea in order to take sparsity explicitly into account in the time-complexity of separation and also design faster algorithms. We apply this approach to two classes of facet-defining inequalities for the three-index assignment problem, and obtain separation algorithms whose time complexity is linear in |supp(x)| instead of n. We indicate that this can be generalized to the axial k-index assignment problem and we show empirically how the separation algorithms exploiting sparsity improve on existing ones by running them on the largest instances reported in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Alvarez-Valdes, R., Parreo, F., Tamarit, J.: A branch-and-cut algorithm for the pallet loading problem. Comput. Oper. Res. 32, 3007–3029 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Appa, G., Magos, D., Mourtos, I.: On multi-index assignment polytopes. Linear Algebra Appl. 416, 224–241 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Applegate, D., Bixby, R., Chvátal, V., Cook, W.: The Traveling Salesman Problem: A Computational Study. Princeton University Press, Princeton (2006). (ISBN 978-0-691-12993-8)

    MATH  Google Scholar 

  4. Balas, E., Qi, L.: Linear-time separation algorithms for the three-index assignment polytope. Discrete Appl. Math. 43, 1–12 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  5. Balas, E., Saltzman, M.: Facets of the three-index assignment polytope. Discrete Appl. Math. 23, 201–229 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  6. Balas, E., Saltzman, M.: An algorithm for the three index assignment problem. Oper. Res. 39, 150–161 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  7. Burkard, R., Rudolf, R., Woeginger, G.: Three-dimensional axial assignment problems with decomposable cost coefficients. Discrete Appl. Math. 65, 123–139 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  8. Caprara, A., Salazar, J.: Separating lifted odd-hole inequalities to solve the index selection problem. Discrete Appl. Math. 92, 111–134 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cheng, E., Cunningham, W.: Separation problems for the stable set polytope. In: Proceedings of The 4th Integer Programming and Combinatorial Optimization Conference Proceedings (1995)

  10. Cheng, E., Cunningham, W.: Wheel inequalities for stable set polytopes. Math. Program. 77, 389–421 (1997)

    MathSciNet  MATH  Google Scholar 

  11. Crama, Y., Spieksma, F.: Approximation algorithms for three-dimensional assignment problems with triangle inequalities. Eur. J. Oper. Res. 60, 273–279 (1992)

    Article  MATH  Google Scholar 

  12. Van den Akker, J., van Hoesel, C., Savelsbergh, M.: A polyhedral approach to single machine scheduling problems. Math. Program. 85, 541–572 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dokka, T.: Algorithms for multi-index assignment problems. PhD thesis, KU Leuven (2013)

  14. Grundel, D., Pardalos, P.: Test problem generator for the multidimensional assignment problem. Comput. Optim. Appl. 30(2), 133–146 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Höfler, B., Fügenschuh, A.: Parametrized grasp heuristics for three-index assignment. EvoCOP Lect. Notes Comput. Sci. 3906, 61–72 (2006)

    Article  Google Scholar 

  16. Kaparis, K., Letchford, A.: Separation algorithms for 0–1 knapsack polytopes. Math. Program. 124, 69–91 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kececioglu, J., Lenhof, Hans-Peter, Mehlhorn, K., Mutzel, P., Reinert, K., Vingron, M.: A polyhedral approach to sequence alignment problems. Discrete Appl. Math. 104(1–3), 143–186 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  18. Landete, M., Escudero, L., Marìn, A.: A branch-and-cut algorithm for the winner determination problem. Decis. Support Syst. 46, 649–659 (2009)

    Article  Google Scholar 

  19. Magos, D., Mourtos, I.: Clique facets of the axial and planar assignment polytopes. Discrete Optim. 6, 394–413 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Nemhauser, G.L., Sigismondi, G.: A strong cutting plane/branch-and-bound algorithm for node packing. J. Oper. Res. Soc. 5, 443–457 (1992)

    Article  MATH  Google Scholar 

  21. Qi, L., Sun, D.: Polyhedral methods for solving three index assignment problems. In: Pardalos, P.M., Pitsoulis, L. S., (eds.) Nonlinear Assignment Problems: Algorithms and Applications, pp. 91–107. Springer, US (2000)

  22. Rebennack, S., Oswald, M., Oliver Theis, D., Seitz, H., Reinelt, G., Pardalos, P.: A branch and cut solver for the maximum stable set problem. J. Comb. Optim. 21(4), 434–457 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Schrijver, A.: Combinatorial Optimization, Polyhedra and Efficiency. Springer, Berlin (2003)

    MATH  Google Scholar 

  24. Spieksma, F.: Multi-index assignment problems: complexity, approximation, applications. In: Pardalos, P.M., Pitsoulis, L. (eds.) Nonlinear Assignment Problems: Algorithms and Applications, pp. 1–12. Kluwer Academic Publisher, Nowell (2000)

    Chapter  Google Scholar 

Download references

Acknowledgments

We are thankful to Armin Fügenschuh for providing the routines to generate instances used in [15], and to Yves Crama for stimulating discussions on this subject.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trivikram Dokka.

Additional information

This paper is an improved version of an extended abstract that appeared as “Fast separation algorithms for three index assignment problems” in the proceedings of ISCO 2012, LNCS 7422, pp. 189–200, 2012.

This research has been co-financed by the European Union (European Social Fund ESF) and Greek national funds through the Operational Program “Education and Lifelong Learning” of the National Strategic Reference Framework (NSRF)—Research Funding Program: Thales: Investing in knowledge society through the European Social Fund (MIS: 380232), and this research has been supported by the Interuniversity Attraction Poles Programme initiated by the Belgian Science Policy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dokka, T., Mourtos, I. & Spieksma, F.C.R. Fast separation for the three-index assignment problem. Math. Prog. Comp. 9, 39–59 (2017). https://doi.org/10.1007/s12532-016-0106-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12532-016-0106-x

Mathematics Subject Classification

Navigation