Skip to main content

Advertisement

Log in

Structural and environmental effects on an assemblage of echinoderms associated with a coral community

  • Original Paper
  • Published:
Marine Biodiversity Aims and scope Submit manuscript

Abstract

Echinoderms are a conspicuous assemblage associated with coral communities, which provides them with food, shelter, and nursery areas. Temporal and spatial changes in environmental conditions may modify their density and composition, which furthermore may affect the structure of the coral community. In order to identify the response of echinoderm composition to environmental fluctuations, variations in the density were evaluated at spatial and temporal levels from 2011–2014 in Islas Marietas National Park, a National Protected Area located off the Mexican Pacific coast, which harbors the most important coral and echinoderm community in the region. The results showed that the species Diadema mexicanum, Centrostephanus coronatus, and Eucidaris thouarsii, were dominant. Differences between areas off the islands were observed, as Isla Redonda showed the highest values (1.31 ± 0.15 in. m2, \( \overline{S} \) = 7.74 ± 0.17) associated with high heterogeneity and availability of food resources. Isla Larga had the lowest density (0.89 ± 0.7 in. m2) and richness (\( \overline{S} \) = 6.49 ± 0.24). This was associated with the presence of high coverage of branching corals (16.34%) which can be considered a space competitor for echinoderms. Moreover, during cold seasons, density (17.44%) and richness (12.6%) increased, with a positive relation with the food supply. During the 2011/La Niña, a partial coral mortality resulted in the proliferation of turf and contributed to the highest abundance of grazer echinoderms. Abundance decreased during the following years, due to the loss of turf coverage. The assemblage of echinoderms maintained their species composition over the years, showing that the coral community of the Central Mexican Pacific has a singular auto-regulatory capacity that allows their long-term maintenance in response to environmental anomalies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alvarado JJ, Solís-Marín FA (2013) Echinoderm research and diversity in Latin America. Springer Press, Heidelberg. doi:10.1007/978-3-642-20051-9

    Book  Google Scholar 

  • Alvarado JJ, Ayala A, Álvarez del Castillo-Cárdenas PA, Fernández C, Aguirre-Rubí J, Buitrago F, Reyes-Bonilla H (2011) Coral communities of San Juan del Sur, Pacific Nicaragua. Bull Mar Sci 87:129–146. doi:10.5343/bms.2010.1058

    Article  Google Scholar 

  • Alvarado JJ, Cortés J, Reyes-Bonilla H (2012) Reconstruction of Diadema mexicanum bioerosion impact on three Costa Rican Pacific coral reefs. Rev Biol Trop 60:121–132

    Article  Google Scholar 

  • Alvarado JJ, Reyes-Bonilla H, Benítez-Villalobos F (2015) Diadema mexicanum, erizo de mar clave en los arrecifes coralinos del Pacífico Tropical Oriental: lo que sabemos y perspectivas futuras (Diadematoida: Diadematidae). Rev Biol Trop 63:135–157

    Google Scholar 

  • Ambrose WG Jr (1993) Effects of predation and disturbance by ophiuroids on soft-bottom community structure in Oslofjord - Results of a mesocosm study. Mar Ecol Prog Ser 97:225–236. doi:10.3354/meps097225

    Article  Google Scholar 

  • Anderson MJ, Gorley RN, Clarke KR (2008) PERMANOVA+ for PRIMER: guide to software and statistical methods. PRIMER-E Press, Plymouth

    Google Scholar 

  • Aronson RB, Edmunds PJ, Precht WF, Swanson DW, Levitan DR (1994) Large scale, long-term monitoring of Caribbean coral reefs: simple, quick, inexpensive techniques. Atoll Res Bull 421:1–19. doi:10.5479/si.00775630.421.1

    Article  Google Scholar 

  • Attrill MJ, Kelmo F (2007) Opportunistic responses of Diadema antillarum (Echinodermata: Echinoidea) populations following the 1997–98 El Niño event in Bahia, Brazil. Estuar Coast Shelf Sci 73:243–248. doi:10.1016/j.ecss.2007.01.007

    Article  Google Scholar 

  • Attrill MJ, Kelmo F, Jones MB (2004) Impact of the 1997–98 El Niño event on the coral reef-associated echinoderm assemblage from northern Bahia, northeastern Brazil. Clim Res 26:151–158. doi:10.3354/cr026151

    Article  Google Scholar 

  • Benítez-Villalobos F, Abadia-Chanona QY (2015) Densidad poblacional, distribución espacial y mortalidad natural del erizo de mar Toxopneustes roseus (Camarodonta: Toxopneustidae) en tres sitios de Oaxaca, México. Rev Biol Trop 63:121–133

    Google Scholar 

  • Benítez-Villalobos F, Martínez-García M (2009) Reproductive biology of the starfish Pharia pyramidatus (Echinodermata: Asteroidea) from the Mexican tropical Pacific. J Mar Biol Assoc UK 92:1409–1418. doi:10.1017/S0025315412000070

    Article  Google Scholar 

  • Birkeland C (1989) The influence of echinoderms on coral-reef communities. Echinoderm Studies 3:1–79

    Google Scholar 

  • Brock VE (1954) A preliminary report on a method of estimating reef fish populations. J Wildl Manage 18:297–308. doi:10.2307/3797016

    Article  Google Scholar 

  • Chatterjee SA, Hadi AS, Price B (2000) Regression Analysis by Example. John Wiley and Sons Press, New York

    Google Scholar 

  • Clarke KR, Gorley RN (2006) Primer v6: user manual/tutorial. PRIMER-E Press, Plymouth

    Google Scholar 

  • Clarke KR, Warwick RM (2001) Change in Marine Communities: an approach to statistical analysis and interpretation. PRIMER-E Press, Plymouth

    Google Scholar 

  • CONANP (2007) Programa de conservación y manejo, Parque Nacional Islas Marietas. CONANP/SEMARNAT Press, DF

  • CONANP (2016) Comunicado de prensa: Se recupera el coral en la Playa del Amor. Conanp/ Semarnat 090/16. http://www.conanp.gob.mx/difusion/comunicado.php?id_subcontenido=1068 Accessed 04 October 2016

  • Cupul-Magaña AL, Aranda OS, Medina-Rosas P, Vizcaíno V (2000) Comunidades coralinas de las Islas Marietas, Bahía de Banderas, Jalisco-Nayarit, México. Mexicoa 2:15–22

    Google Scholar 

  • Dowing JA (1979) Aggregation, transformation, and the design of benthos sampling programs. J Fish Res Board Can 36:1454–1463. doi:10.1139/f79-212

    Article  Google Scholar 

  • Edgar GJ, Banks S, Fariña JM, Calvopiña M, Martínez C (2004) Regional Biogeography of Shallow Reef Fish and Macro-Invertebrate Communities in the Galapagos Archipelago. J Biogeogr 31:1107–1124. doi:10.1111/j.1365-2699.2004.01055.x

    Article  Google Scholar 

  • Foster MS, McConnico LM, Lundsten L, Wadsworth T, Kimball T, Brooks LB, Medina-López M, Riosmena-Rodríguez R et al (2007) Diversidad e historia natural de una comunidad de Lithothamnion muelleri y Sargassum horridum en el Golfo de California. Cienc Mar 33:367–384

    Article  Google Scholar 

  • García-Hernández VC, Reyes-Bonilla H, Balart EF, Ríos-Jara E, Lluch-Cota SE, Serviere-Zaragoza E (2014) Comparison of ecological diversity and species composition of macroalgae, benthic macroinvertebrates, and fish assemblages between two tropical rocky reefs. Rev Biol Mar Oceanogr 49:477–491

    Article  Google Scholar 

  • Glynn PW (1988a) El Niño-Southern Oscillation 1982–1983: nearshore population, community, and ecosystem responses. Annu Rev Ecol Syst 19:309–346. doi:10.1146/annurev.es.19.110188.001521

    Article  Google Scholar 

  • Glynn PW (1988b) El Niño warming, coral mortality and reef framework destruction by echinoid bioerosion in the eastern Pacific. Galaxea 7:129–160

    Google Scholar 

  • Glynn PW (2004) High complexity food webs in low-diversity Eastern Pacific reef–coral communities. Ecosystems 7:358–367. doi:10.1007/s10021-004-0184-x

    Article  Google Scholar 

  • Glynn PW, Enochs IC (2011) Invertebrates and Their Roles in Coral Reef Ecosystems. In: Dubinsky Z, Stambler N (eds) Coral Reefs: An Ecosystem in Transition. Springer Press, Dordrecht, pp 273–325. doi:10.1007/978-94-007-0114-4_18

    Chapter  Google Scholar 

  • González-Medina MJ, Holguin-Quiñones O, de la Cruz-Agüero G (2006) Variación espacio-temporal de algunos macroinvertebrados (Gastropoda, Bivalvia y Echinodermata) de fondos someros del Archipiélago Espíritu Santo, Baja California Sur, México. Cienc Mar 32:33–44

    Article  Google Scholar 

  • Gotelli NJ, Colwell RK (2001) Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol Lett 4:379–391. doi:10.1046/j.1461-0248.2001.00230.x

    Article  Google Scholar 

  • Hastings A, Byers JE, Crooks JA, Cuddington K, Jones CG, Lambrinos JG, Talley TS, Wilson WG (2006) Ecosystem engineering in space and time. Ecol Lett 10:153–164. doi:10.1111/j.1461-0248.2006.00997.x

    Article  Google Scholar 

  • Hermosillo-Núñez B, Rodríguez-Zaragoza F, Ortiz M, Galván-Villa C, Cupul-Magaña AL, Ríos-Jara E (2015) Effect of habitat structure on the most frequent echinoderm species inhabiting coral reef communities at Isla Isabel National Park (Mexico). Community Ecol 16: 125–134. doi:10.1556/168.2015.16.1.14

  • Herrero-Pérezrul MD, Reyes-Bonilla H, González-Azcárraga A, Cintra-Buenrostro CE, Rojas-Sierra A (2008) Equinodermos. In: Danemann GD, Ezcurra E (eds) Bahía de Los Ángeles. INE-PRONATURA Press, Ensenada, pp 339–362

    Google Scholar 

  • James DW (2000) Diet, movement, and covering behavior of the sea urchin Toxopneustes roseus in rhodolith beds in the Gulf of California, México. Mar Biol 137:913–923. doi:10.1007/s002270000423

    Article  Google Scholar 

  • Johansson CL, Francis DS, Uthicke S (2016) Food preferences of juvenile corallivorous crown-of-thorns (Acanthaster planci) sea stars. Mar Biol 163:1–7. doi:10.1007/s00227-016-2823-0

    Article  Google Scholar 

  • Jones CG, Lawton JH, Shachak M (1994) Organisms as ecosystem engineers. Oikos 69:373–386. doi:10.1007/978-1-4612-4018-1_14

    Article  Google Scholar 

  • Lavín MF, Fiedler PC, Amador JA, Ballance LT, Färber-Lorda J, Mestas-Nuñez AM (2006) A review of eastern tropical Pacific oceanography: Summary. Prog Oceanogr 69:391–398. doi:10.1016/j.pocean.2006.03.005

    Article  Google Scholar 

  • Legendre P, Borcard D, Peres-Neto P (2005) Analyzing beta diversity: partitioning the spatial variation of community composition data. Ecol Monogr 75:435–450. doi:10.1890/05-0549

    Article  Google Scholar 

  • Lessios HA (2015) The Great Diadema antillarum Die-Off: 30 Years Later. Ann Rev Mar Sci 8:1–1.17. doi:10.1146/annurev-marine-122414-033857

    Article  Google Scholar 

  • Lirman D (2001) Competition between macroalgae and corals: effects of herbivore exclusion and increased algal biomass on coral survivorship and growth. Coral Reefs 19:392–399. doi:10.1007/s003380000125

    Article  Google Scholar 

  • Lluch-Cota SE, Aragón-Noriega EA, Arreguín-Sánchez F, Aurioles-Gamboa D, Bautista-Romero JJ, Brusca RC, Cervantes-Duarte R, Cortés-Altamirano R et al (2007) The Gulf of California: Review of ecosystem status and sustainability challenges. Prog Oceanogr 73:1–26. doi:10.1016/j.pocean.2007.01.013

    Article  Google Scholar 

  • Luna-Salguero BM, Reyes-Bonilla H (2010) Estructura comunitaria y trófica de las estrellas de mar (Echinodermata: Asteroidea) en arrecifes rocosos de Loreto, Golfo de California, México. Hidrobiológica 20:127–134

    Google Scholar 

  • Mestas-Núñez AM, Miller AJ (2006) Interdecadal variability and climate change in the eastern tropical Pacific: a review. Prog Oceanogr 69:267–284. doi:10.1016/j.pocean.2006.03.011

    Article  Google Scholar 

  • Pantoja DA, Marinone SG, Parés-Sierra A, Gómez-Valdivia F (2012) Numerical modeling of seasonal and mesoscale hydrography and circulation in the Mexican Central Pacific. Cienc Mar 38:363–379

    Article  Google Scholar 

  • Paredes RAL (2010) Erizos de mar: Dinámica poblacional y reclutamiento de larvas dentro de la isla San Cristóbal en el Archipiélago de Galápagos-Ecuador. BS Dissertation. Universidad San Francisco de Quito

  • Pérez AF, Gil DG, Rubilar T (2014) Echinodermata. In: Calcagno JA (ed) Los invertebrados marinos. Fundación de Historia Natural Félix de Azara Press. Buenos Aires, Vázquez Mazzini Editores, pp 295–316

    Google Scholar 

  • Plata L, Filonov A (2007) Marea interna en la parte noroeste de la Bahía de Banderas, México. Cienc Mar 33:197–215

    Article  Google Scholar 

  • Reyes-Bonilla H, Carriquiry J, Leyte-Morales G, Cupul-Magaña AL (2002) Effects of the El Niño-Southern Oscillation and the anti-El Niño event (1997–1999) on coral reefs of the western coast of Mexico. Coral Reefs 21:368–372. doi:10.1007/s00338-002-0255-4

    Article  Google Scholar 

  • Rilov G, Treves H (2010) Climate change effects on marine ecological communities. In: Israel A, Einav R, Seckbach J (eds) Seaweeds and their Role in Globally Changing Environments. Springer Press, Dordrecht, pp 51–68. doi:10.1007/978-90-481-8569-6_4

    Chapter  Google Scholar 

  • Ríos-Jara E, Galván-Villa CM, Rodríguez-Zaragoza FA, López-Uriarte E, Bastida-Izaguirre D, Solís-Marín FA (2013) Los equinodermos (Echinodermata) de bahía Chamela, Jalisco, México. Rev Mex Biodivers 84:263–279. doi:10.7550/rmb.30461

    Article  Google Scholar 

  • Rodríguez-Troncoso AP, Cupul-Magaña AL (2015) Respuesta diferencial del coral Pocillopora verrucosa ante diferentes escenarios de estrés térmico, en el Pacífico Mexicano. In: XVI COLACMAR meeting, Santa Martha, Colombia, abstract 331

  • Rodríguez-Troncoso AP, Carpizo-Ituarte E, Pettay DT, Warner ME, Cupul-Magaña AL (2014) The effects of an abnormal decrease in temperature on the Eastern Pacific reef-building coral Pocillopora verrucosa. Mar Biol 161:131–139. doi:10.1007/s00227-013-2322-5

    Article  CAS  Google Scholar 

  • Rodríguez-Villanueva V, Martínez-Lara R, Zamora VM (2003) Polychaete community structure of the northwestern coast of Mexico: patterns of abundance and distribution. Hydrobiologia 496:385–399. doi:10.1023/A:1026138108252

    Article  Google Scholar 

  • Rodríguez-Zaragoza FA, Cupul-Magaña AL, Galván-Villa CM, Ríos-Jara E, Ortiz M, Robles-Jarero EG, López-Uriarte E, Arias-González JE (2011) Additive partitioning of reef fish diversity variation: a promising marine biodiversity management tool. Biol Cons 20:1655–1675. doi:10.1007/s10531-011-0053-9

    Article  Google Scholar 

  • Rojero-León S (2011) Efecto del ambiente y los peces depredadores sobre la abundancia de erizos de mar en el Archipiélago Espíritu Santo, B.C.S. MC Dissertation. Centro Interdisciplinario de Ciencias Marinas, Instituto Politécnico Nacional, La Paz

  • Sanford E, Kelly MW (2011) Local Adaptation in Marine Invertebrates. Ann Rev Mar Sci 3:509–535. doi:10.1146/annurev-marine-120709-142756

    Article  PubMed  Google Scholar 

  • Sloan NA (1982) Size and structure of echinoderm populations associated with different coexisting coral species at Aldabra Atoll, Seychelles. Mar Biol 66:67–75. doi:10.1007/BF00397256

    Article  Google Scholar 

  • Solís-Marín FA, Laguarda-Figueras A, Honey-Escandón M (2014) Biodiversidad de equinodermos (Echinodermata) en México. Rev Mex Biodivers 85:441–449. doi:10.7550/rmb.31805

    Article  Google Scholar 

  • Sonnenholzner JI, Lawrence J (2002) A brief survey of the echinoderms communities of the central and southern marine-coastal wetlands of the continental coast off Ecuador. Bol Ecotróp 36:27–35

    Google Scholar 

  • Sotelo-Casas RC, Rodríguez-Troncoso AP (2014) Los equinodermos: invertebrados esenciales dentro de la estructura de la comunidad coralina. In: Cifuentes-Lemus JL, Cupul-Magaña FG (eds) Temas sobre investigaciones costeras. Universidad de Guadalajara Press, Guadalajara, pp 56–81

    Google Scholar 

  • Sotelo-Casas RC, Cupul-Magaña AL, Solís-Marín FA, Rodríguez-Troncoso AP (2016) Recruitment patterns of 2 sea cucumber species in a Central Mexican Pacific coral reef community. Rev Mex Biodivers 87:86–91. doi:10.1016/j.rmb.2015.09.020

    Article  Google Scholar 

  • Spalding MD, Fox HE, Allen GR, Davidson N, Ferdaña ZA, Finlayson M, Halpern BS, Jorge MA et al (2007) Marine ecoregions of the world: a bioregionalization of coastal and shelf areas. Bio Science 57:573–583. doi:10.1641/B570707

    Article  Google Scholar 

  • Stella JS, Pratchett MS, Hutchings PA, Jones GP (2011) Coral-associated invertebrates: diversity, ecology importance and vulnerability to disturbance. Oceanogr Mar Biol 49:43–104

    Google Scholar 

  • ter Braak CJF, Šmilauer P (2002) CANOCO reference manual and CanoDraw for Windows user’s guide: software for canonical community ordination (version 4.5). Microcomputer Power Press, Ithaca

  • Tortolero-Langarica JJA, Cupul-Magaña AL, Rodríguez-Troncoso AP (2014) Restoration of a degraded coral reef using a natural remediation process: A case study from a Central Mexican Pacific National Park. Ocean Coast Manag 96:12–19. doi:10.1016/j.ocecoaman.2014.04.020

    Article  Google Scholar 

  • Uthicke S, Schaffelke B, Byrne M (2009) A boom-bust phylum? Ecological and evolutionary consequences of density variations in echinoderms. Ecol Monogr 79:3–24. doi:10.1890/07-2136.1

    Article  Google Scholar 

  • Uthicke S, Logan M, Liddy M, Francis D, Hardy N, Lamare M (2015) Climate change as an unexpected co-factor promoting coral eating seastar (Acanthaster planci) outbreaks. Sci Rep 5:8402. doi:10.1038/srep08402

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vallejo VA (2007) Echinometra vanbrunti (Echinometridae) como hospedero de relaciones comensalistas en el Pacífico Colombiano. Acta Biolo Colomb 12:57–66

    Google Scholar 

  • Vergara-Chen C, Guerra-Lima ZI, Collado G (2015) El pepino de mar, Isostichopus fuscus, recurso marino en peligro con altas necesidades de manejo. Tecnociencia 17:21–41

    Google Scholar 

  • Wang C, Fiedler PC (2006) ENSO variability and the eastern tropical Pacific: a review. Prog Oceanogr 69:239–266. doi:10.1016/j.pocean.2006.03.004

    Article  Google Scholar 

  • Wild C, Hoegh-Guldberg O, Naumann MS, Colombo-Pallotta MF, Ateweberhan M, Fitt WK, Iglesias-Prieto R, Palmer C, Bythell JC (2011) Climate change impedes scleractinian corals as primary reef ecosystem engineers. Mar Freshwater Res 62:205–215. doi:10.1071/MF10254

    Article  CAS  Google Scholar 

  • Zamorano P, Leyte-Morales GE (2005) Densidad poblacional de cuatro especies de erizo (Echinodermata: Echinoidea) en el arrecife de La Entrega, Oaxaca. CICIMAR Oceánides 20:65–72

    Google Scholar 

  • Zamorano P, Leyte-Morales GE (2009) Equinodermos asociados a formaciones arrecifales en Zihuatanejo Acapulco, Guerrero, México. Bol Invest Mar Cost 38:7–28

    Google Scholar 

  • Zar JH (1996) Biostatistical analysis. Prentice Hall, Inc. Press, New Jersey

Download references

Acknowledgements

RCSC’s work was supported by the doctoral fellowship No. 291281sponsored by the National Council of Science and Technology (CONACYT by its Spanish acronym). The authors thank the authorities of Islas Marietas National Park-National Commission of Natural Protected Areas (CONANP by its Spanish acronym) for assistance and use of facilities during the sampling periods. Also, the authors would like to thank LC Alarcón-Ortega and JJA Tortolero-Langarica who contributed to the field work. We thank Dr. John Lawrence, who proofread the English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alma Paola Rodríguez-Troncoso.

Ethics declarations

Funding

The present work was supported by the project 226205 from the Program to Improve Teaching (PROMEP by its Spanish acronym) and the project P/ Integral Institutional Strengthening Program (PIFI by its Spanish acronym)-2010-14MSU0010Z-10 to ACM

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by S. Stöhr

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

Taxonomic list and mean density of echinoderm species, by sampling site, in Islas Marietas National Park. Data are presented as mean ± standard error. Codes: CM = Cueva del Muerto, ZS = Zona de Restauración Sur, ZR = Zona de Restauración; TA = Túnel-Amarradero, PP = Plataforma Pavonas, PA = Playa del Amor. IL = Isla Larga. IR: Isla Redonda. (DOCX 43 kb)

Table S2

One-way SIMPER results (% of contribution) of average dissimilarity among factors (years, seasons, islands, sites) at Islas Marietas National Park, with a cut-off to 90% of contribution. Codes: CM = Cueva del Muerto, ZS = Zona de Restauración Sur, ZR = Zona de Restauración; TA = Túnel-Amarradero, PP = Plataforma Pavonas, PA = Playa del Amor. (DOCX 43 kb)

Fig. S1

Observed and estimated species richness curves versus sampling effort for the site at Islas Marietas National Park. Codes: CM = Cueva del Muerto, ZS = Zona de Restauración Sur, ZR = Zona de Restauración, TA = Túnel-Amarradero, PP = Plataforma Pavonas, PA = Playa del Amor, S obs = observed species, Jack 1 = Jackknife 1, Jack 2 = Jackknife 2. (GIF 42 kb)

High resolution image (TIF 416 kb)

Fig. S2

Comparison of observed echinoderm species richness using pairwise rarefaction curves versus individuals. The dotted line showed the confidence interval of 95%. Codes: CM = Cueva del Muerto, ZS = Zona de Restauración Sur, ZR = Zona de Restauración, TA = Túnel-Amarradero, PP = Plataforma Pavonas, PA = Playa del Amor. (GIF 81 kb)

High resolution image (TIF 800 kb)

Fig. S3

Average species richness by season from 2011 to 2013. Codes, C = Cold season. W = Warm season. (GIF 28 kb)

High resolution image (TIF 181 kb)

Fig. S4

Diversity indexes calculated by year at each site of two islands. Codes, Sites: CM = Cueva del Muerto, ZS = Zona de Restauración Sur, ZR = Zona de Restauración, TA = Tunel-Amarradero, PP = Plataforma Pavonas, PA = Playa del Amor. Islands: IL = Isla Larga, IR = Isla Redonda. (GIF 1403 kb)

High resolution image (TIF 838 kb)

Fig. S5

Linear regression between temperature (° C) and Shannon diversity. (GIF 22 kb)

High resolution image (TIF 181 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sotelo-Casas, R.C., Cupul-Magaña, A.L., Rodríguez-Zaragoza, F.A. et al. Structural and environmental effects on an assemblage of echinoderms associated with a coral community. Mar Biodiv 48, 1401–1411 (2018). https://doi.org/10.1007/s12526-016-0622-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12526-016-0622-y

Keywords

Navigation