Skip to main content
Log in

Ascidian-associated polychaetes: ecological implications of aggregation size and tube-building chaetopterids on assemblage structure in the Southeastern Pacific Ocean

  • Original Paper
  • Published:
Marine Biodiversity Aims and scope Submit manuscript

Abstract

Epifaunal polychaetes inhabit a range of habitat structures built by other organisms, such as ascidians. Here, we examine: i) the polychaete fauna inhabiting aggregations of the ascidian Pyura chilensis in central Chile; ii) the relationship between sample volume (aggregation size) and polychaete assemblage variables; and iii) the effect of a tube-building chaetopterid on the polychaete assemblage structure. The chaetopterid tube load on aggregations determines two ascidian morphotypes, those with a high load of chaetopterid tubes (HT morphotype) and those with a low load of chaetopterid tubes (LT morphotype). From a total of 38 aggregations studied, we found 5,524 specimens belonging to 35 species of polychaetes. Three species were the most abundant in the aggregations (Phyllochaetopterus socialis, Nicolea lobulata, and Typosyllis magdalena), reaching 22% of total abundance. The number of species and individuals increased with sample volume, but only the number of species number varied between morphotypes. Sample volume and the chaetopterid tubes influenced the polychaete assemblage structure, evidencing differences between morphotypes. We suggest that both sample volume and the habitat structuring capacity of the chaetopterid tubes change the habitat complexity of the ascidian aggregations and, hence, produce differences between morphotypes related to the polychaete assemblage structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Albano M, Seco Pon J, Obenat S (2006) Macrozoobentos asociado a los agregados de Phyllochaetopterus socialis Claparède, 1870 en el puerto de Mar del Plata, Argentina. Investig Mar Valparaíso 34:197–203

    Google Scholar 

  • Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26:32–46

    Google Scholar 

  • Anderson MJ, Gorley RN, Clarke KR (2008) PERMANOVA + for PRIMER: Guide to software and statistical methods. PRIMER-E Ltd, Plymouth Marine Laboratory, UK

    Google Scholar 

  • Antoniadou C, Nicolaidou A, Chintiroglou C (2004) Polychaetes associated with the sciaphilic alga community in the northern Aegean Sea: spatial and temporal variability. Helgol Mar Res 58:168–182

    Article  Google Scholar 

  • Astorga MP, Ortíz JC (2006) Variabilidad genética y estructura poblacional del tunicado Pyura chilensis Molina, 1782, en la costa de Chile. Rev Chil Hist Nat 79:423–434

    Article  Google Scholar 

  • Bolam SG, Fernández TF (2002) Dense aggregations of tube-building polychaetes: response to small-scale disturbances. J Exp Mar Biol Ecol 269:197–222

    Article  Google Scholar 

  • Bomkamp RE, Page HM, Dugan JD (2004) Role of food subsidies and habitat structure in influencing benthic communities of shell mounds at sites of existing and former offshore oil platforms. Mar Biol 146:201–211

    Article  Google Scholar 

  • Britayev TA, Zamishliak EA (1996) Association of the commensal scaleworm Gastrolepidia clavigera (Polychaeta: Polynoidae) with holothurians near the coast of South Vietnam. Ophelia 45:175–190

    Article  Google Scholar 

  • Brito MC, Martin D, Núñez J (2005) Polychaetes associated to a Cymodocea nodosa meadow in the Canary Islands: assemblage structure, temporal variability and vertical distribution compared to other Mediterranean seagrass meadows. Mar Biol 146:467–481

    Article  Google Scholar 

  • Callaway R (2003) Long-term effects of imitation polychaete tubes on the benthic fauna: they anchor Mytilus edulis (L.) banks. J Exp Mar Biol Ecol 283:115–132

    Article  Google Scholar 

  • Callaway R (2006) Tube worms promote community change. Mar Ecol Prog Ser 308:49–60

    Article  Google Scholar 

  • Castilla JC, Lagos NA, Cerda M (2004) Marine ecosystem engineering by the alien ascidian Pyura praeputialis on a mid-rocky shore. Mar Ecol Prog Ser 268:119–130

    Article  Google Scholar 

  • Cerda M, Castilla JC (2001) Diversidad y biomasa de macro-invertebrados en matrices intermareales del tunicado Pyura preaputialis (Heller, 1878) en la Bahía de Antofagasta, Chile. Rev Chil Hist Nat 74:841–853

    Article  Google Scholar 

  • Chapman MG, People J, Blockley D (2005) Intertidal assemblages associated with natural Corallina turf and invasive mussel beds. Biodivers Conserv 14:1761–1776

    Article  Google Scholar 

  • Cinar M, Ergen Z (1998) Polychaetes associated with the sponge Sarcotragus muscarum Schmidt, 1864 from the Turkish Aegean coast. Ophelia 48:167–183

    Article  Google Scholar 

  • Clarke KR (1993) Non-parametric multivariate analysis of changes in community structure. Aust J Ecol 18:117–143

    Article  Google Scholar 

  • Clarke KR, Gorley RN (2006) PRIMER v6: user manual/tutorial. PRIMER-E Ltd, Plymouth Marine Laboratory, UK

    Google Scholar 

  • Clarke KR, Warwick RM (2001) Change in marine communities: an approach to statistical analysis and interpretation, 2nd edn. Plymouth Marine Laboratory, UK

    Google Scholar 

  • Coleman FC, Williams SL (2002) Overexploiting marine ecosystem engineers: potential consequences for biodiversity. Trends Ecol Evol 17:40–44

    Article  Google Scholar 

  • Diaz RJ, Cutter GR, Able KW (2003) The importance of physical and biogenic structure to juvenile fishes on the shallow inner continental shelf. Estuaries 26:12–20

    Article  Google Scholar 

  • Dubois S, Retiere C, Olivier F (2002) Biodiversity associated with Sabellaria alveolata (Polychaeta: Sabellariidae) reefs: effects of human disturbance. J Mar Biol Assoc UK 82:817–826

    Article  Google Scholar 

  • Edgar GJ, Aoki M (1993) Resource limitation and fish predation: their importance to mobile epifauna associated with Japanese Sargassum. Oecologia 95:122–133

    Article  Google Scholar 

  • Fauchald K, Jumars PA (1979) The diet of worms: a study of polychaete feeding guilds. Oceanogr Mar Biol Annu Rev 17:193–284

    Google Scholar 

  • Fielding P, Weerts K, Forbes A (1994) Macroinvertebrate communities associated with intertidal and subtidal beds of Pyura stolonifera (Heller) (Tunicata: Ascidiacea) on the Natal coast. S Afr J Zool 29:46–51

    Article  Google Scholar 

  • Fraschetti S, Giangrande A, Terlizzi A, Miglietta MP, Della Tommasa L, Boero F (2002) Spatio-temporal variation of hydroids and polychaetes associated with Cystoseira amentacea (Fucales: Phaeophyceae). Mar Biol 140:949–957

    Article  Google Scholar 

  • Fredriksen S, Christie H, Saethre BA (2005) Species richness in macroalgae and macrofauna assemblages on Fucus serratus L. (Phaeophyceae) and Zostera marina L. (Angiospermae) in Skagerrak, Norway. Mar Biol Res 1:2–19

    Article  Google Scholar 

  • Gherardi M, Giangrande A, Corriero G (2001) Epibiontic and endobiontic polychaetes of Geodia cydonium (Porifera, Demospongiae) from the Mediterranean Sea. Hydrobiologia 443:87–101

    Article  Google Scholar 

  • Guiler ER (1959) Intertidal belt-forming species on the rocky coast of Northern Chile. Proc Roy Soc Tasmania 93:33–98

    Google Scholar 

  • Hauser A, Attrill MJ, Cotton PA (2006) Effects of habitat complexity on the diversity and abundance of macrofauna colonising artificial kelp holdfasts. Mar Ecol Prog Ser 325:93–100

    Article  Google Scholar 

  • Hernández C, Muñoz G, Rozbaczylo N (2001) Poliquetos asociados con Austromegabalanus psittacus (Molina, 1782) (Crustacea: Cirripedia) en Península Gualpén, Chile central: Biodiversidad y efecto del tamaño del sustrato biológico. Rev Biol Mar Oceanogr 36:99–108

    Article  Google Scholar 

  • Hoberg MK, McGee SG, Feder HM (1982) Polychaetes and amphipods as commensals with pagurids from the Alaska shelf. Ophelia 21:167–179

    Article  Google Scholar 

  • Jones GJ, Lawton JH, Shachak M (1994) Organisms as ecosystem engineers. Oikos 69:373–386

    Article  Google Scholar 

  • Jones GJ, Lawton JH, Shachak M (1997) Positive and negative effects of organisms as physical ecosystem engineers. Ecology 78:1946–1957

    Article  Google Scholar 

  • Jumars PA, Dorgan KM, Lindsay SM (2014) Diet of worms emended: an update of Polychaete feeding guilds. Ann Rev Mar Sci. doi:10.1146/annurev-marine-010814-020007

    PubMed  Google Scholar 

  • Kelaher BP, Castilla JC (2005) Habitat characteristics influence macrofaunal communities in coralline turf more than mesoscale coastal upwelling on the coast of Northern Chile. Estuar Coast Shelf Sci 63:155–165

    Article  Google Scholar 

  • Lancellotti D, Vásquez J (2000) Zoogeografía de macroinvertebrados bentónicos de la costa de Chile: contribución para la conservación marina. Rev Chil Hist Nat 73:99–129

    Article  Google Scholar 

  • Lee SY, Fong CW, Wu RSS (2001) The effects of seagrass (Zostera japonica) canopy structure on associated fauna: a study using artificial seagrass units and sampling of natural beds. J Exp Mar Biol Ecol 259:23–50

    Article  PubMed  Google Scholar 

  • Luckenbach MW (1987) Effects of adult infauna on new recruits: implications for the role of biogenic refuges. J Exp Mar Biol Ecol 105:197–206

    Article  Google Scholar 

  • Monteiro SM, Chapman MG, Underwood AJ (2002) Patches of the ascidian Pyura stolonifera (Heller, 1878): structure of habitat and associated intertidal assemblages. J Exp Mar Biol Ecol 270:171–189

    Article  Google Scholar 

  • Nalesso RC, Duarte LFL, Pierozzi I Jr, Enumo EF (1995) Tube epifauna of the polychaete Phyllochaetopterus socialis Claparède. Estuar Coast Shelf Sci 41:91–100

    Article  Google Scholar 

  • Pérez CD, Vila-Nova DA, Santos AM (2005) Associated community with the zoanthid Palythoa caribaeorum (Duchassaing & Michelotti, 1860) (Cnidaria, Anthozoa) from littoral of Pernambuco, Brazil. Hydrobiologia 548:207–215

    Article  Google Scholar 

  • Qian PY (1999) Larval settlement of polychaetes. Hydrobiologia 402:239–253

    Article  CAS  Google Scholar 

  • Quinn GP, Keough MJ (2002) Experimental design and data analysis for biologists. Cambridge University Press, United Kingdom, p 537

    Book  Google Scholar 

  • Rabaut M, Guilini K, Van Hoey G, Vincx M, Degraer S (2007) A bio-engineered soft-bottom environment: The impact of Lanice conchilega on the benthic species-specific densities and community structure. Estuar Coast Shelf Sci 75:525–536

    Article  Google Scholar 

  • Ribeiro SM, Omena EP, Muricy G (2003) Macrofauna associated to Mycale microsigmatosa (Porifera, Demospongiae) in Rio de Janeiro State, SE Brazil. Estuar Coast Shelf Sci 57:951–959

    Article  Google Scholar 

  • Roberts DA, Johnston EL, Poore AGB (2008) Contamination of marine biogenic habitats and effects upon associated epifauna. Mar Pollut Bull 56:1057–1065

    Article  CAS  PubMed  Google Scholar 

  • Sánchez-Moyano JE, García-Asencio I (2009) Distribution and trophic structure of annelid assemblages in a Caulerpa prolifera bed from southern Spain. Mar Biol Res 5:122–132

    Article  Google Scholar 

  • Sánchez-Moyano JE, García-Adiego EM, Estacio F, García-Gómez JC (2002) Effect of environmental factors on the spatial variation of the epifaunal polychaetes of the alga Halopteris scoparia in Algeciras Bay (Strait of Gibraltar). Hydrobiologia 470:133–148

    Article  Google Scholar 

  • Sepúlveda RD (2001) Diversidad de macro-invertebrados asociados a agregaciones de Pyura chilensis (Ascidiacea: Pyuridae) en dos sitios de Bahía San Vicente. Marine Biology Thesis, Universidad Católica de Concepción, Chile, 60pp

  • Sepúlveda RD, Moreno RA, Carrasco FD (2003a) Diversidad de macroinvertebrados asociados a arrecifes de Phragmatopoma moerchi Kinberg, 1867 (Polychaeta: Sabellariidae) en el intermareal rocoso de Cocholgüe, Chile. Gayana 67:45–54

    Google Scholar 

  • Sepúlveda R, Cancino JM, Thiel M (2003b) The peracarid epifauna associated with the ascidian Pyura chilensis (Molina, 1782) (Ascidiacea: Pyuridae). J Nat Hist 37:1555–1569

    Article  Google Scholar 

  • Sousa Dias A, Paula J (2001) Associated fauna of Sabellaria alveolata colonies on the central coast of Portugal. J Mar Biol Assoc UK 81:169–170

    Article  Google Scholar 

  • Thiel M, Ullrich N (2002) Hard rock versus soft bottom: the fauna associated with intertidal mussel beds on hard bottoms along the coast of Chile, and considerations on the functional role of mussel beds. Helgol Mar Res 56:21–30

    Article  Google Scholar 

  • Thiel M, Vásquez J (2000) Are kelp holdfast islands on the ocean floor?–indication for temporarily closed aggregations of peracarid crustaceans. Hydrobiologia 440:45–54

    Article  Google Scholar 

  • Trueblood DD (1991) Spatial and temporal effects of terebellid polychaete tubes on soft-bottom community structure in Phosphorescent Bay, Puerto Rico. J Exp Mar Biol Ecol 149:139–159

    Article  Google Scholar 

  • Tsuchiya M, Nishihira M (1985) Islands of Mytilus edulis as a habitat for small intertidal animals: effect of island size on community structure. Mar Ecol Prog Ser 25:71–81

    Article  Google Scholar 

  • Van Hoey G, Guilini K, Rabaut M, Vincx M, Degraer S (2008) Ecological implications of the presence of the tube-building polychaete Lanice conchilega on soft-bottom benthic ecosystems. Mar Biol 154:1009–1019

    Article  Google Scholar 

  • Vasconcelos P, Cúrdia J, Castro M, Gaspar MB (2007) The shell of Hexaplex (Trunculariopsis) trunculus (Gastropoda: Muricidae) as a mobile hard substratum for epibiotic polychaetes (Annelida: Polychaeta) in the Ria Formosa (Algarve coast-southern Portugal). Hydrobiologia 575:161–172

    Article  Google Scholar 

  • Vásquez JA (1983) Pyura chilensis Molina, 1782 en el norte del Perú (Ascidiacea, Pyuridae). Boll Soc Biol Concepción 54:171–172

    Google Scholar 

  • Voultsiadou E, Pyrounaki MM, Chintiroglou C (2007) The habitat engineering tunicate Microcosmus sabatieri Roule, 1885 and its associated peracarid epifauna. Estuar Coast Shelf Sci 74:197–204

    Article  Google Scholar 

  • Voultsiadou E, Kyrodimou M, Antoniadou C, Vafidis D (2010) Sponge epibionts on ecosystem-engineering ascidians: the case of Microcosmus sabatieri. Estuar Coast Shelf Sci 86:598–606

    Article  Google Scholar 

  • Woodin SA (1978) Refuges, disturbance, and community structure: a marine soft-bottom example. Ecology 59:274–284

    Article  Google Scholar 

  • Zühlke R (2001) Polychaetes tubes create ephemeral community pattern: Lanice conchilega (Pallas, 1766): associations studied over six years. J Sea Res 46:261–272

    Article  Google Scholar 

Download references

Acknowledgments

This study was funded by the Fondo de Investigación Pesquera FIP #96/49 grant to JMC, and supported by the Fondo Nacional de Desarrollo Científico y Tecnológico FONDECYT #3100145 grant to RDS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger D. Sepúlveda.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sepúlveda, R.D., Rozbaczylo, N., Ibáñez, C.M. et al. Ascidian-associated polychaetes: ecological implications of aggregation size and tube-building chaetopterids on assemblage structure in the Southeastern Pacific Ocean. Mar Biodiv 45, 733–741 (2015). https://doi.org/10.1007/s12526-014-0283-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12526-014-0283-7

Keywords

Navigation