Skip to main content
Log in

Monitoring Urban Subsidence with Multi-master Radar Interferometry Based on Coherent Targets

  • Research Article
  • Published:
Journal of the Indian Society of Remote Sensing Aims and scope Submit manuscript

Abstract

A method is introduced in this paper to identify coherent scatterers (CS) with high spectral correlation among sublook SAR images. Using this method, the CSs can be identified in single SAR image. And the multi-reference radar interferometry is proposed to monitor urban subsidence with the candidate CSs. An experiment was conducted utilizing eight ALOS PALSAR SAR images over Zhengzhou urban area during the year of 2007–2010. The experiment has demonstrated that the identified CSs have large interferometric coherence and small amplitude deviation, which indicates the phase are stable during the time span. The displacement mean square error is 7.6 mm/a comparison with ground leveling data, which demonstrates that the proposed algorithm is reliable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arnaud, A. (1999). Ship detection by SAR interferometry, in Proc. IGARSS, Hamburg, Germany, 5:2616–2618.

  • Arnaud, A., Closa, J., Hanssen, R., Adam, N., Eineder, M., Inglada, J., Fitoussi, G., & Kampes, B. (2004). Development of algorithm for the exploitation of ERS-Envisat using the stable points network. Technical report. Altamira Information. Barcelona, Spain. European Space Agency Study report ESA Contract Nr. 16702/02/I-LG.

  • Bamler, R. (2000). Interferometric stereo radargrammetry: absolute height determination from ERS-ENVISAT interferograms. International Geoscience and Remote Sensing Symposium, 2, 742–745.

    Google Scholar 

  • Berardino, P., Fornaro, G., & Lanari, R. (1999). A new algorithm for surface defromation monitoring based on small baseline differential SAR interferometry. IEEE Transactions on Geoscience and Remote Sensing.40(11):2375–2383.

  • Chen, Q., Ding X. L., Liu, G. X., Hu, J. C., & Yuan, L. G. (2009). Baseline recognition and parameter estimation of persistent-scatterer Network in Radar Interferometry. Chinese Journal of Geophysics, 52(9), 2229–2236. in Chinese.

    Google Scholar 

  • Chen Q., Liu G. X., Hu J. C., Ding X. L., & Yang Y. H. (2012). Mapping ground 3-D displacement with GPS and PS-InSAR networking in the Pingtung area, southwestern Taiwan, China. Chinese Journal of Geophysics, 55(10), 3248–3258. in Chinese.

    Google Scholar 

  • Colesanti, C., Ferretti, A., Prati, C., & Rocca F. (2003). Monitoring landslides and tectonic motions with the permanent scatterers technique. Engineering Geology, 68(1–2), 31–34.

    Google Scholar 

  • Ding, X. L., Liu, G. X., Li, Z. W., Li Z. L., & Chen Y. Q. (2003). Ground subsidence monitoring in Hong Kong with satellite SAR interferometry. Photogrammetry Engineering & Remote Sensing, 70(10), 1151–1156.

    Article  Google Scholar 

  • Ferretti, A. C., & Rocca, F. (2001). Permanent scatterers in SAR interferometry. IEEE Transactions on Geoscience and Remote Sensing, 39(1), 8–20.

    Article  Google Scholar 

  • Ferretti, A., Prati, C., & Rocca, F. (2002). Nonlines subsidence rate estimation using permanent scatterers in differential SAR interferometry. IEEE Transactions on Geoscience and Remote Sensing, 38(5), 2202–2212.

    Article  Google Scholar 

  • Ferretti, A., Fumagalli, A., Novali, F., Prati, C., Rocca, F., & Rucci, A. (2011). A new algorithm for processing interferometric data-stacks: SqueeSAR. IEEE Transactions on Geoscience and Remote Sensing, 49(9), 3460–3470.

    Article  Google Scholar 

  • Gabriel, A. K., Goldstein, R. M., & Zebker, H. A. (1989). Mapping small height changes over large areas: differential radar interferometry. Journal of Geophysical Research, 94, 9183–9191.

    Article  Google Scholar 

  • Gischig, V., Loew, S., Kos, A., Moore, J. R., Raetzo, H., & Lemy, F. (2009). Identification of active release planes using ground-based differential InSAR at the Randa rock slope instability, Switzerland. Natural Hazards and Earth System Sciences, 9(6), 2027–2038.

    Article  Google Scholar 

  • Goldstein, R. M., Engelhardt H., Kamb, B., & Frolich, R. M. (1993). Satellite radar interferometry for monitoring ice sheet motion: application to an Antarctic ice stream. Science, 363, 1525–1530.

    Article  Google Scholar 

  • Henry, C., Souyris, J. C., Adragna, F., & Marthon, P. (1999). Target detection and analysis based on spectral analysis of a SAR image: A simulation approach, in Proc. IGARSS, Hamburg, Germany, 5:2616–2618.

  • Li, Z., Elliott, J. R., Feng, W., Jackson, J. A., Parsons, B. E., & Walters R. T. (2011). The 2010 MW 6.8 Yushu (Qinghai, China) earthquake: constraints provided by InSAR and body wave seismology. Journal of Geophysical Research, 16(B10), B10302.

    Article  Google Scholar 

  • Liu, G., Ding, X., Chen, Y., Li, Z., & Li Z. (2001). Ground settlement of Chek Lap Kok airport Hong Kong, detected by satellite synthetic aperture radar interferometry. Chinese Science Bulletin, 46(21), 1778–1782.

    Article  Google Scholar 

  • Lu, Z., Mann, D., Freymueller, J. T., & Meyer D. J. (2002). Syhthetic aperture radar interferometry of Okmpk volcano, Alaska: radar observations. Journal of Geophysical Research, 105, 10791–10806.

    Article  Google Scholar 

  • Massonnet, D., Rossi M., Carmona C., Adragna F., Peltzer G., & Feigl K. (1993). The displacement field of the Landers earthquake mapped by radar interferometry. Nature, 364, 138–142.

    Article  Google Scholar 

  • Ouchi, K., & Wang, H. (2005). Interlook cross-correlation function of speckle in SAR images of sea surface processed with partially overlapped sub-apertures. IEEE Transactions on Geoscience and Remote Sensing, 43(4), 695–701.

    Article  Google Scholar 

  • Vander Kooij. (2003). Coherent target analysis. Third international Workshop on ERS SAR interferometry,’ FRINGE03’, Frascati, Italy.

  • Wang, Y., Liao, M. S., Li, D. R.,Wei Z. X., Fang, Z. (2007). Subsidence velocity retrieval from long-term coherent targets in radar interferometric stacks. Chinese Journal of Geophysics, 50(2), 598–604. in Chinese.

  • Wegmuller, U., Walter, D., Spreckels, V., Werner, C. L. (2010). Nonuniform ground motion monitoring with terrasar-X. Persistent scatterer interferometry. IEEE Transactions on Geoscience and Remote Sensing, 48(2), 895–903.

    Article  Google Scholar 

  • Werner, C., Wegmuller, U., Strozzi, T., Wiesmann, A. (2003). Interferometric point target analysis for deformation mapping. International Geoscience and Remote Sensing Symposium, 1–3, Toulouse, France.

  • Xu, W. B., Li, Z. W., Ding, X. L., & Wang, C. C. (2012). Application of small baseline subsets D-InSAR technology to estimate the time series land deformation and aquifer storage coefficients of Los Angeles area. Chinese Journal of Geophysics, 55(2), 452–461. in Chinese.

    Article  Google Scholar 

  • Zebker, H. A., & Villasenor, J. (1992). Decorrelation in interferometric radar echoes. IEEE Transactions on Geoscience and Remote Sensing, 30(5), 950–959.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the following research projects: the National High-tech R&D Program of China (2012AA121303); the National Natural Science Foundation of China (41304012,61427802,41330634,41374016); Hunan Province Key Laboratory of Coal Resources Clean-utilization and Mine Environment Protection (E21422). The authors would like to thank anonymous reviewers who gave valuable suggestion that has helped to improve the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-huan Peng.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Hl., Peng, Jh. Monitoring Urban Subsidence with Multi-master Radar Interferometry Based on Coherent Targets. J Indian Soc Remote Sens 43, 529–538 (2015). https://doi.org/10.1007/s12524-014-0434-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12524-014-0434-0

Keywords

Navigation