Skip to main content
Log in

Distinguishing Maize, Soyabean and Tobacco Fields Using Temporal MODIS 16 Day NDVI Images in the Large Scale Commercial Farming Areas of Zimbabwe

  • Research Article
  • Published:
Journal of the Indian Society of Remote Sensing Aims and scope Submit manuscript

Abstract

In this study we tested whether we can use a temporal series of 16 day Moderate Resolution Imaging Spectroradiometer (MODIS) derived normalized difference vegetation index (MODIS NDVI) data for the 2010–11 season to distinguish fields of soyabean from those of maize and tobacco with different planting dates in large scale commercial farms of Zimbabwe. We also test statistically for an optimal phenological stage (whether green up onset, green peak, or senescence) at which we can distinguish these crops. Furthermore, we test whether we can use rainfall to explain any anomalies in crop NDVI profiles data for the same season. Our results indicate that when planting date is considered as a variable, it is possible to distinguish soyabean, maize and tobacco using MODIS NDVI profiles during the early green up stage, as well as, during the late green up stage. In addition, our results confirm the effect of rainfall on the NDVI signal of crops, with a decrease in rainfall having a dipping effect on the NDVI and vice versa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig 2
Fig 3
Fig 4

Similar content being viewed by others

References

  • Andres, V., Anatoly, A., Gitelson, D. C., Galina, K., Bryan, L., & James, S. (2004). Monitoring maize (Zea mays L.) phenology with remote sensing. Agronomy Journal, 96, 1139–1147.

    Article  Google Scholar 

  • Badhwar, G. D. (1980). Crop emergence date determination from spectral data. Photogrammetry Engineering and Remote Sensing, 46, 369–377.

    Google Scholar 

  • Biglouei, M. H., Assimi, M. H., & Akbarzadeh, A. (2010). Effect of water stress at different growth stages on quantity and quality straits of Virginia (flue cured) tobacco type. Plant, Soil and Environment, 56(2), 67–75.

    Google Scholar 

  • Chen, Z., Uchida, S., Tang, H., & Xu, B. (2004). NDVI-based winter wheat unmixing for accurate area etimation. IEEE International Geoscience and Remote Sensing Symposium, 6, 3977–3980.

    Google Scholar 

  • Chen, P., Fedosejevs, G., Tiscareno-Lopez, M., & Arnold, J. (2006). Assessment of MODIS-EVI, MODIS-NDVI and Vegetation-NDVI composite data using agricultural measurements: an example of at corn fields in Mexico. Environmental Monitoring and Assessment, 119, 69–82.

    Article  Google Scholar 

  • Csornai, G., Winhardt, Z., Suba, P., Smoyoyi, P., Nador, G., Martinovich, L., et al. (1999). Crop monitoring by remote sensing. Budapest: FIG Commission 3 Annual Meeting and Seminar.

  • DeFries, R. S., & Townshend, J. R. G. (1994). NDVI derived landcover classification at a global scale. International Journal of Remote Sensing, 15, 3567–3586.

    Article  Google Scholar 

  • Derrac, J., García, S., Molina, D., & Herrera, F. (2011). A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm and Evolutionary Computation, 1(1), 3–18.

    Article  Google Scholar 

  • Doraiswamy, P. C., Akehemedov, B., Stern, A., Hatfield, J. L., & Prueger, J. (2003). MODIS applications for mapping regional crop yields. Toulese, France: In International Geoscience and Remote Sensing Symposium.

    Google Scholar 

  • Doraiswamy, P. C., Stern, A., & Akhemedov, B. (2007). Crop classification in the U.S. Corn belt using MODIS imagery. Barcelona: International Geoscience and Remote Sensing Symposium.

    Google Scholar 

  • Fisher, J. I., Mustard, J. F., & Vadeboncoeur, M. A. (2006). Green leaf phenology at landsat resolution: scaling from the field to the satellite. Remote Sensing of Environment, 100, 265–279.

    Article  Google Scholar 

  • Gearhart, A., Booth, D. T., Sedivec, K., & Schauer, C. (2012). Use of Kendall’s coefficient of concordance to assess agreement among observers of very high resolution imagery. Geocarto International, 28(6), 517–526.

    Article  Google Scholar 

  • Guenther, B., Xiong, X., Salomonson, V. V., Barnes, W. L., & Young, J. (2002). On orbit perfomance of the earth observing system moderate resolution imaging spectroradiometer; first year data. Remote Sensing of Environment, 83(1–2), 16–30.

    Article  Google Scholar 

  • Hastings, D. A., & Emery, W. J. (1992). The advanced very high resolution radiometer (AVHRR): a brief reference guide. Photogrammetry Engineering and Remote Sensing, 58, 1183–1888.

    Google Scholar 

  • Hendrickson, B. L., & Durkin, J. W. (1986). Growing period and drought early warning in Africa using satellite data. International Journal of Remote Sensing, 7, 1583–1608.

    Article  Google Scholar 

  • Holben, B. N. (1986). Characteristics of maximum-value composite image from temporal AVHRR data. International Journal of Remote Sensing, 7(11), 1417–1434.

    Article  Google Scholar 

  • Huete, A., Didan, K., Miura, T., Rodriguez, E. P., Gao, X., & Ferreira, L. G. (2002). Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, 83(1–2), 195–213.

    Article  Google Scholar 

  • Knight, J. F., Lunneta, R. L., Ediriwickrema, J., & Khorram, S. (2006). Regional scale land cover characterization using MODIS NDVI 250 m multitemporal imagery: a phenology-based approach. GIScience and Remote Sensing, 43(1), 1–23.

    Article  Google Scholar 

  • Knipling, E. B. (1970). Physical and physiological basis for reflectance of visible and near infrared radiation from vegetation. Remote Sensing of Environment, 1(3), 155–159.

    Article  Google Scholar 

  • Lilliefors, H. W. (1967). On the Kolmogorov-Smirnov test for normality with mean and variance unknown. Journal of the American Statistical Association, 62(318), 399–402.

    Article  Google Scholar 

  • Mann, H. B., & Whitney, D. R. (1947). On a test of whether one of Two random variables is stochastically larger than the other. The Annals of Mathematical Statistics, 18(1), 50–60.

    Article  Google Scholar 

  • Meng, J., & Wu, B. (2008). Study on the crop condition monitoring methods with remote sensing. The International Archives of the Photogrammetry. XXXVII: Remote Sensing and Spatial Information Sciences.

    Google Scholar 

  • Moulin, S., Bondeau, A., & Delecolle, R. (1998). Combining agricultural crop models and satellite observations: from field to regional scales. International Journal of Remote Sensing, 19(6), 1021–1036.

  • Myaka, F. A., Kirenga, G., & Malema, B. (2005). Proceedings of the First National Soybean Stakeholders Workshop,. In Morogoro, Tanzania., 10th - 11th November 2005

  • NASA. (1999). Moderate resolution imaging spectroradiometer (MODIS). Warehouse Inventory: National Aeronautics and Space Administration.

    Google Scholar 

  • Schneider, S. R., & McGinnis, D. F. (1982). The NOAA-AVHRR: a new satellite sensor for monitoring crop growth. West Lafayette: Proceedings of the 1982 Symposium on Machine Processing of Remotely Sensed Data, LARS.

    Google Scholar 

  • Schowengerdt, R. A. (1997). Remote sensing: models and methods for image processing (2ed.). New York: Academic.

    Google Scholar 

  • Schwartz, M. D., & Reed, B. C. (1999). Surface phenology and satellite sensor derived onset of greenness. International Journal of Remote Sensing, 20, 3451–3457.

    Article  Google Scholar 

  • Sibanda, G. (2012). US$65m boost for tobacco industry. The Herald Online, 01 March 2012.

  • Sibanda, M., & Murwira, A. (2012). The use of multi-temporal MODIS images with ground data to distinguish cotton from maize and sorghum fields in smallholder agricultural landscapes. International Journal of Remote Sensing, 33, 4841–4855.

    Article  Google Scholar 

  • Smith, K., & Huyser, W. (1987). World distribution and significance of soybean. In J.R. Wilcox (Ed) Soybean: improvement, production, and uses. Agron. Monograph, 16, 1–22

  • Swain, P. H., & Davis, S. M. (1978). Remote sensing: the quantitative approach. New York: McGraw-Hill Inc.

    Google Scholar 

  • Tarpley, J. D., Schneider, S. R., & Mooney, R. L. (1984). Global vegetation indices from NOAA-7 meteorological satellite. Journal of Climate and Applied Meteorology, 23, 491–494.

    Article  Google Scholar 

  • Tucker, C. J. (1979). Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment, 8, 127–150.

    Article  Google Scholar 

  • Van Leeuwen, W. J. D., Huete, A. R., & Laing, T. W. (1999). Modis vegetation index compositing approach: a prototype with AVHRR data. Remote Sensing of Environment, 69(3), 16–30.

    Google Scholar 

  • Vincent, V., & Thomas, R. G. (1960). An agricultural survey of southern Rhodesia. Part 1: agroecological survey. Salisbury: Government Printer.

    Google Scholar 

  • Wardlow, B. D., & Egbert, S. L. (2008). Large-area crop mapping using time series MODIS 250m NDVI data: an assessment for the U.S. Central graet plains. Remote Sensing of Environment, 112, 1096–1116.

    Article  Google Scholar 

  • Zhang, X., Friedl, C. B., Schaaf, A. H., Strahler, J. C. F., Hodges, F., Gao, B. C., et al. (2003). Monitoring vegetation phenology using MODIS. Remote Sensing of Environment, 84, 471–475.

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge the support of the African Institute for Agrarian Studies (AIAS) and Ruzivo Trust who facilitated fieldwork logistics. We also want to acknowledge Joseph Chiriseri, a colleague who helped out in data collection for the entire fieldwork exercise. Thanks are also due to Ezekia Svotwa of the Tobacco Research Board, for providing valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caleb Maguranyanga.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maguranyanga, C., Murwira, A. & Sibanda, M. Distinguishing Maize, Soyabean and Tobacco Fields Using Temporal MODIS 16 Day NDVI Images in the Large Scale Commercial Farming Areas of Zimbabwe. J Indian Soc Remote Sens 43, 79–87 (2015). https://doi.org/10.1007/s12524-014-0395-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12524-014-0395-3

Keywords

Navigation