Skip to main content

Advertisement

Log in

A Cenomanian-Turonian drowning unconformity on the eastern part of Kopet-Dagh basin, NE Iran

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

A Cenomanian-Turonian interval in the Mozduran pass section, eastern part of Kopet-Dagh basin (NE of Iran), was measured and studied in order to interpret the biostratigraphy and paleoecology (based on distribution of planktonic foraminifera). This section consists of 52.5-m light and gray marl and coincides with the Aitamir and Abderaz formation boundary. Based on study of 47 samples, 11 planktonic foraminifera genera and 27 species were encountered, and the following zones have been defined: Rotalipora cushmani Total Range Zone and three zones of Helvetoglobotruncana helvetica, Dicarinella primitiva-Marginotruncana sigali, and Dicarinella concavata as condenced zones. This study shows that the sediment record is incomplete in the section. This unconformity is just after a drowning succession, places in the Late Cenomanian-Early Turonian Whiteinella archaeocretacea Zone, and interpreted as a drowning unconformity. A paleoenvironmental model has been formulated to explain the successive paleocommunity changes during this drowning of the platform. We attribute the drowning of some parts of the platform to the occurrence of the Cenomanian-Turonian oceanic anoxic event. The impingement of anoxic waters over the platform could produce the drastic reduction of the carbonate producing observed in the stratigraphic section and therefore a reduction in carbonate accumulation rates. Subsidence and the Late Cenomanian-Early Turonian sea level rise were then able to drown the platform.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Plate 1
Plate 2
Plate 3

Similar content being viewed by others

References

  • Abramovich S, Keller G, Stueben D, Berner Z (2003) Characterization of late Campanian and Maastrichtian planktic foraminiferal depth habitats and vital activities based on stable isotopes. Palaeogeogr Palaeoclimatol Palaeoecol 202:1–29

    Article  Google Scholar 

  • Afsharharb A (1969) A brief history of geological exploration and geology of the Sarakhas Area and the Khangiran Gas Field. Bull Iran Pet Inst 37:86

    Google Scholar 

  • Afsharharb A (1994) Kopet-Dagh geology, Tehran, geological survey of Iran

  • Aguilera-Franco N, Allison P (2004) Events of the Cenomanian-Turonian Succession, Southern Mexico. J Iber Geol 31:25–50

    Google Scholar 

  • Aguilera-Franco N, Scott R (2005) Timing and rates of the Cenomanian-Turonian drowning on the Guerrero-Morelos Platform, Southern Mexico. Stratigraphy 4(2):341–354

    Google Scholar 

  • Alavi M, Vaziri H, Seyedemami K, Lasemi Y (1997) The Triassic and associated rocks of the Aghdarband areas in central and north eastern Iran as remnant of the southern Turanian active continental margin. Geol Soc Am Bull 109:1563–1575

    Article  Google Scholar 

  • Amorossi A (1995) Glaucony and sequence stratigraphy: a conceptual framework of distribution in siliciclastic sequences. J Sediment Res 65:419–425

    Google Scholar 

  • Arthur MA, Dean WE, Schlanger SO (1985) Variations in the global carbon cycle during the Cretaceous related to climate, volcanism and changes in atmospheric CO2. AGU Geophys Monogr 32:504–529

    Google Scholar 

  • Berberian M, King GCP (1981) Toward a paleogeographyand tectonic evolution of Iran. Can J Earth Sci 18:210–265

    Article  Google Scholar 

  • Bice KL, Birgel D, Meyers PA, Dahl KA, Hinrichs KU, Norris RD (2006) A multiple proxy and model study of Cretaceous upper ocean temperatures and atmospheric CO2 concentrations. Paleoceanography 21. doi:10.1029/2005PA001203

  • Brass GW, Southam JR, Peterson WH (1982) Warm saline bottom water in the ancient ocean. Nature 296:620–623

    Article  Google Scholar 

  • Braun H (1962) Zur Entstehung der marin-sedimentaeren Eisenerze. Z. Erzbergb. Metalhiitten Wes 15:613–623

    Google Scholar 

  • Buryakovsky LA, Chilinger GV, Aminzadeh F (2001) Petroleum geology of south Caspian basin. Gulf Professional Publishing, USA

    Google Scholar 

  • Caron M (1985) Cretaceous planktonic foraminifera. In: Plankton stratigraphy. Cambridge Univ pp 17–86

  • Davoudzadeh M, Schmidt K (1984) Review of the Mesozoic paleogeography and paleotectonic evolution of Iran. N Jb Geol Paläont (Abh) 2:182–207

    Google Scholar 

  • Fairbridge RW (1967) Phases of diagenesis and authigenesis. In: Diageesis in Sediment, Elsevier, Amsterdam pp. 19–89

  • Flügel E (2010) Microfacies of carbonate rocks; analysis, interpretation and application. Springer-Verlag, Berlin

    Google Scholar 

  • Föllmi KB (1996) The phosphorus cycle, phosphogenesis and marine phosphate-rich deposits. Earth Sci Rev 40:55–124

    Article  Google Scholar 

  • Gale AS, Smith AB, Monks NEA, Young JA, Howard A, Wray DS, Huggett JM (2000) Marine biodiversity through the Late Cenomanian-Early Turonian: palaeoceanographic controls and sequence stratigraphic biases. J Geol Soc London 157:745–757

    Article  Google Scholar 

  • Gradstein FM, Agterberg FP, Ogg JG, Hardenbol J, Veen PV, Huang Z (1995) A Tr iassic, Jurassic and Cretaceous time scale. SEPM Spec Publ 54:95–126

    Google Scholar 

  • Haq BU, Hardenbol J, Vail PR (1987) Chronology of fluctuating sea levels since the Triassic. Science 235:1156–1167

    Article  Google Scholar 

  • Hardenbol J, Thierry J, Farley MB, Jacquin T, Graciansky PC, Vail PR (1998) Mesozoic and Cenozoic sequence chronostratigraphic framework of Europe anbasins. SEPM Spec Publ 60:3–13

    Google Scholar 

  • Hart MB (1999) The evolution and biodiversity of Cretaceous planktonic foraminiferida. Geobios 32:247–255

    Article  Google Scholar 

  • Heydari E (2008) Tectonics versus eustatic control on superse-quences of the Zagros Mountains of Iran. Tectonophysics 451:56–70

    Article  Google Scholar 

  • Hilbretch H, Hubberton HW, Oberhansli H (1992) Biogeography of planktonic foraminifera and regional carbon isotope variations: productivity and water masses in Late Cretaceous Europe. Palaeogeogr Palaeoclimatol Palaeoecol 93:407–421

    Article  Google Scholar 

  • Huck S (2011) understanding the driving factors on the Oceanic Anoxic Event 1a (early Aptian) The neritic perspective. Dissertations, university of Bochum

  • Jarvis I, Carson GA, Cooper MKE, Hart MB, Leary PN, Tocher BA, Horne D, Rosenfeld A (1988) Microfossil assemblages and the Cenomanian-Turonian (Late Cretaceous) oceanic anoxic event. Cretac Res 9:3–103

    Article  Google Scholar 

  • Jarvis I, Mabrouk A, Moody RTJ, Cabrera S (2002) Late Cretaceous (Campanian) carbon isotope events, sea-level change and correlation of the Tethyan and Boreal realms. Palaeogeogr Palaeoclimatol Palaeoecol 188:215–248

    Article  Google Scholar 

  • Jenkyns HC (1999) Mesozoic anoxic events and palaeoclimate. Zbl Geol Paläontol 1:943–949

    Google Scholar 

  • Jenkyns HC (2003) Evidence for rapid climate change in the Mesozoic-Palaeogene greenhouse world. Philos Trans R Soc 361:1885–1916

    Article  Google Scholar 

  • Keller G (2002) Guembelitria dominated late Maastrichtian planktic foraminiferal assemblages mimic early Danian in the Eastern Desert of Egypt. Mar Micropaleontol 47:71–99

    Article  Google Scholar 

  • Keller G, Pardo A (2004) Paleoecology of the Cenomanian-Turonian Stratotype Section (GSSP) at Pueblo, Colorado. Mar Micropleontol 51:95–128

    Article  Google Scholar 

  • Keller G, Adatte T, Luciani V, Karoui N, Zaghbib-Turki D (2002) Paleoecology of the Cretaceous-Tertiary mass extinction in planktic foraminifera. Palaeogeogr Palaeoclimatol Palaeoecol 178:257–298

    Article  Google Scholar 

  • Keller G, Stueben D, Zsolt B, Adatte T (2004) Cenomanian-Turonian sea level and salinity variations at Pueblo, Colorado. Palaeogeogr Palaeoclimatol Palaeoecol 211:19–43

    Article  Google Scholar 

  • Larson RL (1991) Latest pulse of earth evidence for a mid Cretaceous superplume. Geology 19:547–550

    Article  Google Scholar 

  • Larson RL, Erba E (1999) Onset of the mid-Cretaceous greenhouse in the Barremian-Aptian: igneous events and the biological, sedimentary, and geochemical responses. Paleoceanography 14:663–678

    Article  Google Scholar 

  • Lecki RM, Yuretich RF, West OOL, Finkelstein D, Schmidt M (1998) Paleoceanography of the southwestern Western Interior Sea during the time of the Cenomanian-Turonian boundary (Late Cretaceous). Concepts Sedimentol Paleontol 6:101–126

    Google Scholar 

  • Leckie RM (1985) Foraminifera of the Cenomaian-Turonian boundary interval, Greenhorn Formation, Rock Canyon Anti-cline, Pueblo, Colorado. Mar Micropaleontol 4:139–149

    Google Scholar 

  • Lenton TM, Watson AJ (2000) What regulates the oxygen content of the atmosphere? Glob Biogeochem Cycles 14:249–268

    Article  Google Scholar 

  • Marino M, Santantonio M (2010) Understanding the geological record of carbonate platform drowning across rifted Tethyan margins: Examples from the Lower Jurassic of the Apennines and Sicily (Italy). Sediment Geol 225:116–137

    Article  Google Scholar 

  • Masse JP, Fenerci-Masse M (2013) Drowning events, development and demise of carbonate platforms, andcontrolling factors: The Late Barremian-Early Aptian record of Southeast France. Sediment Geol 298:28–52

    Article  Google Scholar 

  • Moussavi-Harami R, Brenner RL (1992) Geohistory analysis and petroleum reservoir characteristics of Lower Cretaceous (Neocomian) sandstone, eastern portion of Kopet-Dagh basin, northeast Iran. AAPG Bull 76:1200–1208

    Google Scholar 

  • Premoli-Silva I, Verga D (2004) Practical Manual of Cretaceous planktonic Foraminifera. Universities of Perugia and, Milano

    Google Scholar 

  • Price GD, Hart MB (2002) Isotopic evidence for early to mid-Cretaceous ocean temperature variability. Mar Micropaleontol 46:45–58

    Article  Google Scholar 

  • Schlager W (1981) The paradox of drowned reefs and carbonate platforms. Geol Soc Am Bull 92:197–211

    Article  Google Scholar 

  • Schlager W (1989) Drowning unconformities on carbonate platforms. Soc. Econ. Paleontol. Mineral Spec Publ 44:15–25

    Google Scholar 

  • Schlanger SO, Arthur MA, Jenkyns HC, Scholle PA (1987) The Cenomanian-Turonian Oceanic Anoxic Event, I. Stratigraphy and distribution of organic carbon-rich beds and the marine δ13C excursion. Geol Soc London Spec Publ 26:371–399

    Article  Google Scholar 

  • Shafiee-Ardestani M, Vahidinia M, Youssef-Ali M (2011) Biostratigraphy and foraminiferal bioevent of the Abderaz Formation (middle Turonian-lower Companian) in the Kopeh-Dagh basin, northeastern Iran. Egypt J Paleontol 11:1–16

    Google Scholar 

  • Shafiee-Ardestani M, Vahidinia M, Sadeghi A (2013) Paleoceanography and Paleobiogeography Patterns of the Turonian-Campanian Foraminifers from the Abderaz Formation, North Eastern Iran. Open J Geol 3:19–27

    Article  Google Scholar 

  • Vahidinia M, Ariai A, Sobhani E (1999) A new approach to Abderaz Formation in the east of Kopet-Dagh basin. Sci J Islam Azad Univ 31:2325–2385

    Google Scholar 

  • Vogt PR (1989) Volcanogenic upwelling of anoxic, nutrient-rich water: A possible factor in carbonate-bank/reef demise and benthic faunal extinctions. Geol Soc Am Bull 101:1225–1245

    Article  Google Scholar 

  • Wilson J (1975) Carbonate facies in geologic history. Springer, New York

    Book  Google Scholar 

  • Wissler L, Funk H, Weissert H (2003) Response of Early Cretaceous carbonate platforms to changes in atmospheric carbon dioxide levels. Palaeogeogr Palaeoclimatol Palaeoecol 200:187–205

    Article  Google Scholar 

  • Wonders AA (1980) Middle and late Cretaceous planktonic Foraminifera of the western Mediterranean area. Utrecht Micropaleontol Bull 24:1–158

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Vahidinia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalanat, B., Vahidinia, M., Vaziri-Moghaddam, H. et al. A Cenomanian-Turonian drowning unconformity on the eastern part of Kopet-Dagh basin, NE Iran. Arab J Geosci 8, 8373–8384 (2015). https://doi.org/10.1007/s12517-015-1779-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12517-015-1779-6

Keywords

Navigation