Skip to main content

Advertisement

Log in

Palaeoenvironments of the Continental Intercalaire fossil from the Late Cretaceous (Barremian-Albian) in North Africa: a case study of southern Tunisia

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

Through the Late Cretaceous, the southern shore of the Tethys Ocean migrated north and south over short distances. These vicissitudes are documented in the Continental Intercalaire, a long series of mainly non-marine sediments deposited in which dinosaur or other reptiles tracks and floral fossils are common across southern Tunisia (North Africa). A combined taxonomic, climatological, and palaentological studies provides independent lines of evidence for reconstruction of palaeoenvironments. The Bou Hedma/Boulouha and Sidi Aïch/Douiret Formations from southern Tunisia span the later part of the Late Cretaceous. During the Late Cretaceous the Tunisian territory was an archipelago, thus a particularly suitable area for a more detailed study. We investigated the area’s plant palaeo-biogeography, using fossil wood, with information from both a literature survey and investigation of new samples. The presence of fossils at great depths and distances from the present coastline, without signs of abrasion and far from areas of fluvial discharges does indicate that these remains have not been transported from the continent to the shelf, but have been preserved directly on the area that today correspond to the continental shelf. The climate during the accumulation of Barremian-Albian deposits in this region is inferred to have been warm and humid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ahmadi R, Ouali J, Mercier E, Van-Vliet Lanöe B, Mansy JL, Rekhiss F (2006) The geomorphologic hallmarks of hinge migration in the Fault related folds: a study case in Southern Tunisian Atlas. J Struct Geol 28:721–728

    Article  Google Scholar 

  • Alabushev A, Wiedmann J (1994) Palaeogeographic significance of the distribution of Albian (Cretaceous) ammonite faunas in the Pacific coast of north-east Russia. N Jb Geol Paläont (Abh) 1994(4):193–204

    Google Scholar 

  • Aloui T (2010) Etudes des sables quartzo-feldspathiques de la formation Sidi Aïch (Tunisie Centrale): Approche géostatistique et utilisation dans le ciment blanc. Thesis, Univ. Tunis El Manar, Fac. Sc. Tunis. Tunisia, p 288

  • Anderson PE, Benton MJ, Trueman CN, Paterson BA, Cuny G (2007) Paleoenvironments of the vertebrates on the southern shore of the Tethys: the nonmarine Early Cretaceous of Tunisia. Palaeogeogr Palaeoclimatol Palaeoecol 243:118–131

    Article  Google Scholar 

  • Apesteguia S (2002) Successional Structure in Continental Tetrapod Faunas from Argentina along the Cretaceous. Simposio Sobre O Cretaceo Do Brasil, 6° Simposio Sobre El Cretacico Da America Del Sur, 2, Sao Pedro, Boletim de Resumos. UNESP, Sao Pedro pp 135–141

  • Avanzini M, Frisia S, Aan Den Driessche K, Keppens E (1997) A dinosaur tracksite in an Early Liassic tidal Xat in northern Italy: paleoenvironmental reconstruction from sedimentology and geochemistry. Palaios 12:538–551

    Article  Google Scholar 

  • Barale G, Ouaja M (2001) Découverte des nouvelles flores avec des restes à anités angiospermiennes dans le Crétacé Inferieur du Sud Tunisien. Cretac Res 22:131–143

    Article  Google Scholar 

  • Barale G, Ouaja M (2002) La biodiversité végétale des gisements d’âge Jurassique supérieur-Crétacé inférieur de Merbah El Asfer (Sud-Tunisien). Cretac Res 23:707–737

    Article  Google Scholar 

  • Barale G, Zarbout M, Philippe M (1998) Niveaux à végétaux fossiles en environnement fluviatile à marin proximal dans le Dahar (Bathonien a Albien-Sud Tunisien). Bull Soc Géol Fr 169:811–819

    Google Scholar 

  • Barron EJ, Washington WM (1985) Warm Cretaceous climates: high atmospheric CO2 as a plausible mechanism. In: Sundquist ET, Broecker WS (eds) The carbon cycle and atmospheric CO2: natural variations archaean to present: American Geophysical Union Geophysical Monograph, vol. 32, pp 546–553

  • Ben Ismail MH (1991) Les bassins mésozoiques (Trias a Aptien) du Sud de la Tunisie: stratigraphie intégrée, caractéristiques géophysiques et évolution géodynamique. Ph.D. Thesis, University of Tunis II, 446 p

  • Benton MJ, Bouaziz S, Buffettaut E, Martill D, Ouaja M, Soussi M, Trueman C (2000) Dinosaurs and other fossil vertebrates from fluvial deposits in the Lower Cretaceous of southern Tunisia. Palaeogeogr Palaeoclimatol Palaeoecol 157:227–246

    Article  Google Scholar 

  • Berner EK, Berner RA (1996) Global environment: water, air and geochemical cycles. Prentice Hall, Old Tappan, 376 pp

    Google Scholar 

  • Bertini RJ, Marshall LG, Gayet M, Brito P (1993) Vertebrate faunas from the Adamantina and Marilia formations (Upper Bauru Group, Late Cretaceous, Brazil). N Jb Geol Paläont (Abh) 188(1):71–101

    Google Scholar 

  • Bodin S, Petitpierre L, Wood J, Elkanouni I, Redfern J (2010) Timing of early to mid-Cretaceous tectonic phases along North Africa: new insights from the Jeffara escarpment (Libya–Tunisia). J Afr Earth Sci 58:489–506

    Article  Google Scholar 

  • Bouaziz S, Buffetaut E, Ghanmi M, Jaeger JJ, Martin M, Mazin JM, Tong H (1988) Nouvelles découvertes de vertébrés fossiles dans l’Albien du Sud tunisien. Bull Soc Géol Fr 4:335–339

    Google Scholar 

  • Bouaziz S, Barrier E, Angelier J, Tricart P, Turki MM (1998) Tectonic evolution of Southern Tethyan margin in southern Tunisia. In: Crasquin-Soleau S, Barrier E (eds) Peri-Tethys Memoir: 3. Stratigraphy and Evolution of Peri-Tethyan Platforms, vol. 177. Mem. Mus. Natl. Hist. Nat., Paris, pp 215–236

  • Bouaziz S, Barrier E, Soussi M, Turki M, Zouari H (2002) Tectonic evolution of the northern African margin in Tunisia from paleostress data and sedimentary record. Tectonophysics 357:227–253

    Article  Google Scholar 

  • Broin F (1980) Les tortues de Gadoufaoua (Aptien du Niger): aperçu sur la paléogéographie des Pelomedusidae (Pleurodira). Mém Soc Géol Fr 139:39–46

    Google Scholar 

  • Browning EL, Watkins DK (2008) Elevated primary productivity of calcareous nannoplankton associated with ocean anoxic event 1b during the Aptian/Albian transition (Early Cretaceous). Paleoceanography 23:PA2213. doi:10.1029/2007PA001413

    Article  Google Scholar 

  • Cavin L, Tong H, Boudad L, Meister C, Piuz A, Tabouelle J, Aarab M, Amiot R, Buffetaut E, Dyke G, Hua S, Le Loeuff J (2010) Vertebrate assemblages from the early Late Cretaceous of southeastern Morocco: an overview. J Afr Earth Sci 57:391–412

    Article  Google Scholar 

  • Chang KH (1975) Cretaceous stratigraphy of southeast Korea. J Geol Soc Korea 11:1–23

    Google Scholar 

  • Chumakov NM, Zharkov MA, Herman AB, Doludenko MP, Kalandadze NN, Lebedev EL, Ponomarenko AG, Rautian AS (1995) Climatic belts of the mid-Cretaceous time. Stratigr Geol Correl 3(3):241–260

    Google Scholar 

  • Courel L, Ait Salem H, Benaouiss N, Et-Touhami M, Fekirine B, Oujidi M, Soussi M, Tourani A (2003) Mid-Triassic to Early Liassic clastic/evaporitic deposits over the Maghreb Platform. Palaeogeogr Palaeoclimatol Palaeoecol 196:157–176

    Article  Google Scholar 

  • Donnadieu Y, Dromart G, Goddéris Y, Pucéat E, Brigaud B, Dera G, Dumas C, Olivier N (2011) A mechanism for brief glacial episodes in the Mesozoic greenhouse. Paleoceanography 26:PA3123

    Article  Google Scholar 

  • Douglas JG, Williams GE (1982) Southern polar forests: the early Cretaceous floras of Victoria and their palaeoclimatic significance. Palaeogeogr Palaeoclimatol Palaeoecol 39:171–185

    Article  Google Scholar 

  • Duffin C (2001) The hybodont shark, Priohybodus d’Erasmo, 1960 (Early Cretaceous, northern Africa). Zool J Linnean Soc 133:303–308

    Article  Google Scholar 

  • Erba E, Bottini C, Weissert HJ, Keller CE (2010) Calcareous nannoplankton response to surface-water acidification around oceanic anoxic event 1a. Science 329:428–432

    Article  Google Scholar 

  • Erbacher J, Huber BT, Norris RD, Markey M (2001) Increased thermohaline stratification as a possible cause for an ocean anoxic event in the Cretaceous Period. Nature 409:325–327

    Article  Google Scholar 

  • Federico F, Michela C, Fulvio F (2010) The “Continental Intercalaire” of southern Tunisia: Stratigraphy, paleontology, and paleoecology. J Afr Earth Sci 21:73–74

    Google Scholar 

  • Federico F, Michela C, Fulvio F (2012) The “Continental Intercalaire” of southern Tunisia: Stratigraphy, paleontology, and paleoecology. J. Afr Earth Sci 73–74:1–23

    Google Scholar 

  • Folk RL, Ward W (1957) A study in the significance of grain size parameters. Sediment Petrol 27:3–27

    Article  Google Scholar 

  • Frakes LA, Francis JE, Syktus JI (1992) Climate modes of the Phanerozoic: the history of the earth’s climate over the past 600 million years. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Gallala W, Gaied M, Montacer M (2009) Detrital mode, mineralogy and geochemistry of the Sidi Aïch formation (early cretaceous) in central and southwestern Tunisia: implications for provenance, tectonic setting and paleoenvironment. J Afr Earth Sci 53:159–170

    Article  Google Scholar 

  • Gautier M (1953) Les chotts, machines evaporitives complexes. Centre National de la Recherche Scientifique (CNRS). Colloq Int 35:317–325

    Google Scholar 

  • Gérards T, Yans J, Gerrienne P (2007) Quelques implications paléoclimatiques de l’observation de bois fossiles du Wealdien du bassin de Mons (Belgique)-Résultats préliminaires. Carnets de Géologie, Mémoire, pp 29–34

    Google Scholar 

  • Guendouz A, Moulla AS, Edmunds W, Shand P, Poole J, Zouari K, Mamou A (1997) Paleoclimatic information contained in groundwater of the Grand Erg Oriental. N. Africa. Proceeding symposium. IAEA, Vienna, p 349

  • Guiraud R, Bosworth W, Thierry J, Delplanque A (2005) Phanerozoic geological evolution of Northern and Central Africa: an overview. J Afr Earth Sci 43:83–143

    Article  Google Scholar 

  • Hallam A (1985) A review of Mesozoic climates. J Geol Soc Lond 142:433–445

    Article  Google Scholar 

  • Hamed Y (2009a) Caractérisation hydrogéologique, hydrochimique et isotopique du système aquifère de Moularés-Tamerza. Ph.D. thesis, University of Sfax, pp 280

  • Hamed Y (2011) The hydrogeochemical characterization of groundwater in Gafsa-Sidi Boubaker region (Southwestern Tunisia). Arab J Geosci. doi:10.1007/s12517-011-0393-5

  • Hamed Y, Zairi M, Ali W, Ben Dhia H (2010a) Estimation of residence times and recharge area of groundwater in the Moulares mining basin by using carbon and oxygen isotopes (South Western Tunisia). J Environ Prot 1:466–474

    Article  Google Scholar 

  • Hamed Y, Dassi L, Tarki M, Ahmadi R, Mehdi K, Ben Dhia H (2010b) Groundwater origins and mixing pattern in the multilayer aquifer system of the Gafsa-south mining district: a chemical and isotopic approach. Environ Earth Sci 63:1355–1368

    Article  Google Scholar 

  • Hamed Y, Hadji R, Ben Dhia H, Ali W (2012) Groundwater evolution in the Continental Intercalaire aquifer of southern Tunisia and a part of Algeria: Hydrochemical and isotopic indicators. International colloque-Watmed6, 10–12 October. Sousse-Tunisia

  • Hay WW (2008) Evolving ideas about the Cretaceous climate and ocean. Cretac Res 29:725–753

    Article  Google Scholar 

  • Hay WW (2009) Cretaceous oceans and ocean modeling. In: Hu X, Wang C, Scott RW, Wagreich M, Jansa L (eds) Cretaceous oceanic red beds: Stratigraphy, composition, origins, and paleoceanographic and paleoclimatic significance. SEPM Special Publication No. 91, pp. 243–271

  • Hay WW (2011) Can humans force a return to a “Cretaceous” climate? Sediment Geol 235:5–26

    Article  Google Scholar 

  • Hay WW, Leslie MA (1990) Could possible changes in global groundwater reservoir cause eustatic sea-level fluctuations? In: Revelle R (ed) Sea-level change. National Academy Press, Washington, pp 161–170

    Google Scholar 

  • Herrle JO, Kössler P, Friedrich O, Erlenkeuser H, Hemleben C (2004) High resolution carbon isotope records of the Aptian to lower Albian from SE France and the Mazagan Plateau (DSDP Site 545): a stratigraphic tool for paleoceanographic and paleobiologic reconstruction. Earth Planet Sci Lett 218:149–161

    Article  Google Scholar 

  • IPCC (2007) Climate change 2007: The physical science basis. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. 996 pp

  • Jacobs DK, Sahagian DL (1993) Climate-induced fluctuations in sea level during non-glacial times. Nature 361:710–712

    Article  Google Scholar 

  • Jallouli C, Mickus K (2000) Regional gravity analysis of the crustal structure of Tunisia. J Afr Earth Sci 30:63–78

    Article  Google Scholar 

  • Jefferson TH (1982) Fossil forests from lower Cretaceous of Alexander island, Antarctica. Palaeontology 25:681–708

    Google Scholar 

  • Kallel N, Paterne M, Duplessy J, Vergnaud-Grazzini C, Pujol C, Labeyrie L, Arnold M, Fontugne M, Pierre C (1997) Enhanced rainfall in the Mediterranean region during the last sapropel event. Oceanol Acta 20:697–712

    Google Scholar 

  • Khalifa M, Catuneanu O (2008) Sedimentology of the fluvial and fluvio-marine facies of the Bahariya Formation (Early Cenomanian), Bahariya Oasis, Western Desert, Egypt. J Afr Earth Sci 51:89–103

    Article  Google Scholar 

  • Kilian C (1931) Des principaux Complexes Continentaux du Sahara. C. R. Somm. Soc. Geo. Fr., Paris, 109–111

  • Kleypas JA, Buddemeier RW, Archer D, Gattuso JP, Langdon C, Opdyke BN (1999) Geochemical consequences of increased atmospheric carbon dioxide on coral reefs. Science 284:118–120

    Article  Google Scholar 

  • Lapparent A (1960) Les Dinosauriens du “Continental intercalaire” du Saharal central [The dinosaurs of the “Continental Intercalaire” of the central Sahara]. Mém Soc Géol Fr nouv Sér 39(88A):1–57, M. Carrano/M. Carrano/M. Carrano

    Google Scholar 

  • Le Loeuff J, Metais E, Dutheil D, Rubinos J, Buffetaut E, Lafont F, Cavin L, Moreau F, Tong H, Blanpied C, Sbeta A (2010) An Early Cretaceous vertebrate assemblage from the Cabao Formation of NW Libya. Geol Mag 147:750–759

    Article  Google Scholar 

  • Lefranc JP, Guiraud R (1990) The Continental Intercalaire of northwestern Sahara and its equivalents in the neighbouring regions. J Afr Earth Sci 10:27–77

    Article  Google Scholar 

  • Liu Z, Dreybrodt W, Wang H (2010) A new direction in effective accounting for the atmospheric CO2 budget: considering the combined action of carbonate dissolution, the global water cycle and photosynthetic uptake of DIC by aquatic organisms. Earth Sci Rev 99:162–172

    Article  Google Scholar 

  • M’Rabet A (1987) Stratigraphie, sédimentation et diagenèse carbonatée des séries du Crétacé inférieur de Tunisie centrale. Thèse. Univ. Paris-Sud, 540 pp

  • Moulla AS, Guendouz A, Cherchali MEH (02-04/06/2002) Contribution des isotopes à l’étude des ressources en eau transfrontalières en Algérie. In: Proceedings, International Workshop on Managing Shared Aquifer Resources in Africa. IHP/UNESCO, Tripoli, Libya, pp 55–67

  • Orr JC, Fabry VJ, Aumont O, Bopp L, Doney SC, Feely RA, Gnanadsikan A, Gruber N, Ishida A, Joos F, Key RM, Lindsay K, Maier-Reimer E, Matear R, Monfray P, Moouchet A, Najjar RG, Plattner GK, Rodgers KB, Sabine CL, Sarmiento JL, Schlitzer R, Slater RD, Totterdell IJ, Weirig MF, Yamanaka Y, Yool A (2005) Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437:681–686

    Article  Google Scholar 

  • Ouaja M (2003) Étude sédimentologique et paléobotanique du Jurassique moyen–Crétacé inférieur du bassin de Tataouine (Sud-Est de la Tunisie), thèse, université Claude-Bernard, Lyon-1 (161 p.)

  • Ouaja M, Philippe M, Barale G, Ferry S, Ben Youssef M (2004) Mise en évidence d’une flore oxfordienne dans le Sud-Est de la Tunisie: intérêts stratigraphique et paléoécologique. Geobios 37:89–97

    Article  Google Scholar 

  • Page VM (1979) Dicotyledonous wood from the upper Cretaceous of central California. J Arnold Arboretum 60:323–349

    Google Scholar 

  • Page VM (1980) Dicotyledonous wood from the upper Cretaceous of central California II. J Arnold Arboretum 61:723–748

    Google Scholar 

  • Page VM (1981) Dicotyledonous wood from the upper Cretaceous of central California III d conclusions. J Arnold Arboretum 62:437–455

    Google Scholar 

  • Price GD (1999) The evidence and implications of polar ice during the Mesozoic. Earth Sci Rev 48:183–210

    Article  Google Scholar 

  • Roderick ML, Farquhar GD (2004) Changes in Australian pan evaporation from 1970 to 2002. Int J Climatol 24:1077–1090

    Article  Google Scholar 

  • Russell DA (1998) New data on spinosaurid dinosaurs from the Early Cretaceous of the Sahara. C R Acad Sci Paris II 327:347–353

    Google Scholar 

  • Schlesinger WH (1997) Biogeochemistry: an analysis of global change, 2nd edn. Academic Press, San Diego, 588 pp

    Google Scholar 

  • Scotese CR (2003) PALAEOMAP, Earth History, Jurassic (www document). http://www.scotese.com/jurassic.htm (April 2003)

  • Selley RC (1996) Ancient sedimentary environments and their subsurface diagnosis, 4th edn. Chapman Hall, London, 300 p

    Google Scholar 

  • Sereno PC, Brusatte SL (2008) Basal abelisaurid and carcharodontosaurid theropods from the Lower Cretaceous Elrhaz Formation of Niger. Acta Palaeontol Pol 53:15–46

    Article  Google Scholar 

  • Sereno P, Beck A, Dutheil D, Larsson H, Lyon G, Moussa B, Sadleir R, Sidor C, Varricchio D, Wilson G, Wilson J (1999) Cretaceous sauropods from the Sahara and the uneven rate of skeletal evolution among dinosaurs. Science 286:1342–1347

    Article  Google Scholar 

  • Sereno PC, Larsson HCE, Sidor CA, Gado B (2001) The giant crocodyliform Sarcosuchus from the Cretaceous of Africa. Science 294:1516–1519

    Article  Google Scholar 

  • Smiley CJ (1967) Palaeoclimatic interpretations of some Mesozoic floral sequences. Bull Am Assoc Petrol Geol 51:849–863

    Google Scholar 

  • Smith JB, Dalla Vecchia F (2006) An abelisaurid (Dinosauria: Theropoda) tooth from the Lower Cretaceous Chicla formation of Libya. J Afr Earth Sci 46:240–244

    Article  Google Scholar 

  • Smith JB, Lamanna MC, Lacovera KJ, Dodson P, Smith JR, Poole JC, Giegengack R, Attia Y (2001) A giant sauropod dinosaur from an Upper Cretaceous mangrove deposit in Egypt. Science 292:1704–1706

    Article  Google Scholar 

  • Smith J, Lamanna M, Askar A, Bergig K, Tshakreen S, Abugares M, Rasmussen D (2010) A large abelisauroid theropod from the Early Cretaceous of Libya. J Paleontol 84:927–934

    Article  Google Scholar 

  • Srarfi D (2006) Biostratigraphie, biodiversité, taphonomie et paleoenvironnement des niveaux à vertébrés du Jurassique-Crétacé du Sud-Est de la Tunisie. Implications paléo-biogéographiques. PhD Thesis, University Claude Bernard Lyon 1

  • Srarfi D, Ouaja M, Buffetaut E, Cuny G, Barale G, Ferry S, Fara E (2004) Position stratigraphique des niveaux à vertébrés du Mésozoique du Sud-Est de la Tunisie. Notes Serv Géol Tunis 72:5–16

    Google Scholar 

  • Suarez MB, Gonzales LA, Ludvigson GA (2011) Quantification of a greenhouse hydrologic cycle from equatorial to polar latitudes: the mid-Cretaceous water bearer revisited. Palaeogeogr Palaeoclimatol Palaeoecol 307:301–312

    Article  Google Scholar 

  • Taquet P (1976) Géologie et paléontologie du gisement de Gadoufoua (Aptien du Niger). Cahiers de Paléontologie, 1–191

  • Taquet P, Russell D (1999) A massively-constructed iguanodont from Gadoufaoua, Lower Cretaceous of Niger. Ann Paleontol 85:85–96

    Article  Google Scholar 

  • Zarbout M, Souquet P, Peybernes B (1994) Séquences de dépôt dans les environnements de transition fluviatile-marin de Crétacé inferieur de Dahar (Sud-Tunisien). Strata 6:141–142

    Google Scholar 

  • Zeebe RE (2001) Seawater pH and isotopic paleotemperatures of Cretaceous oceans. Palaeogeogr Palaeoclimatol Palaeoecol 170:49–57

    Article  Google Scholar 

  • Zharkov MA, Murdmaa IO, Filatova NI (1995) Paleogeography of the mid-Cretaceous period. Stratigr Geol Correl 3(3):216–240

    Google Scholar 

Download references

Acknowledgments

This paper was written during a period of field School students of Earth Sciences. Our sincere thanks go to the University of Gabes for granting the access to these field schools. We also would like to thank our colleagues’ structuralist, paleontologist, and sedimentologist of the Sciences Faculty of Gabes and the Institute of water Sciences and Technology of Gabes for his encouragement during the writing process and these advices following the submission in this journal. Finally, we gratefully acknowledge the Water, Energy and Environmental Laboratory (Tunisia), University of Engineering and Technology-Taxila (Pakistan), Faculty of Sciences of Marrakech (Morocco), and University Institute of Applied Geosciences, Section Hydrogeology (Germany) without which this contribution would not have been possible.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Younes Hamed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hamed, Y., Al-Gamal, S.A., Ali, W. et al. Palaeoenvironments of the Continental Intercalaire fossil from the Late Cretaceous (Barremian-Albian) in North Africa: a case study of southern Tunisia. Arab J Geosci 7, 1165–1177 (2014). https://doi.org/10.1007/s12517-012-0804-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12517-012-0804-2

Keywords

Navigation