Skip to main content
Log in

Effect of the Red Sea brine-filled deeps (Shaban and Kebrit) on the composition and abundance of benthic and planktonic foraminifera

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

Composition and abundance of benthic and planktonic foraminifera in surface sediments of the brine-filled Shaban and Kebrit Deeps and some bathyal-slope environments in the northern Red Sea were examined for correlation with environmental conditions (e.g., bathymetry, sediment grain-size, organic matter, and carbonates) of the brine-filled deeps and normal Red Sea water. About 67 benthic foraminiferal species were recorded in these sediments. The lowest faunal density and diversity were recorded in the Shaban and Kebrit Deeps, whereas the highest density and diversity were recorded in the bathyal-slope sediments. Cluster analysis divided the benthic foraminiferal species into three major faunal assemblages. Buccella granulataGyroidinoides soldaniiBolivina persiensis assemblage dominated the 650–1,300 m depth due to predominance of oligotrophic, highly oxygenated bottom waters. The Melonis novozealandicumSpirophthalmidium acutimargo assemblage was recorded in the deep and bathyal-slope sediments indicating its tolerance for wider ranges of environmental conditions. The deeps were only dominated by the Brizalina spathulata assemblage indicating existence of un-totally anoxic conditions. The deeps yielded also very low planktonic foraminiferal density that may be attributed to occurrence of the seawater–brine interface which not only minimized the deposition of high buoyancy, large-test species (Globigerinoides sacculifer, Globigerinella siphonifera, and Orbulina universa), but also overestimated the small-test species (Globigerinoides ruber, Globoturborotalita rubescens, and Globigerinita glutinata) in the sediments. These findings should be taken into consideration when reconstructing paleoceanographic conditions of the Red Sea using core sediments from the brine-filled deeps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abu-Zied RH, Keatings KW, Flower RJ (2007) Environmental controls on foraminifera in Lake Qarun Egypt. J Foraminifer Res 37:136–149

    Article  Google Scholar 

  • Abu-Zied RH, Rohling EJ, Jorissen FJ, Fontanier C, Casford JSL, Cooke S (2008) Benthic foraminiferal response to changes in bottom water oxygenation and organic carbon flux in the eastern Mediterranean during LGM to Recent times. Mar Micropaleontol 67:46–68

    Article  Google Scholar 

  • Abu-Zied RH, Bantan RA, Basaham AS, El Mamoney MH, Al-Washmi HA (2011) Composition, distribution, and taphonomy of nearshore benthic foraminifera of the Farasan Islands, southern Red Sea, Saudi Arabia. J Foraminifer Res 41:349–362

    Article  Google Scholar 

  • Almogi-Labin A, Hemleben C, Meischner D, Erlenkeuser H (1996) Response of Red Sea deep-water agglutinated foraminifera to water mass changes during the Late Quaternary. Mar Micropaleontol 28:283–297

    Article  Google Scholar 

  • Altherr R (1992) The Afro-Arabian rift system. Tectonophysics 204:111

    Article  Google Scholar 

  • Anschutz P, Blanc G, Chatin F, Geiller M, Pierret MC (1999) Hydrographic change during 20 years in the brine-filled basins of the Red Sea. Deep-Sea Res PT 1(46):1779–1792

    Article  Google Scholar 

  • Antunes A, Ngugi DK, Stingl U (2011) Microbiology of the Red Sea (and other) deep-sea anoxic brine lakes. Environ Microbiol Rep 3:416–433

    Article  Google Scholar 

  • Auras-Schudnagies A, Kroon D, Ganssen G, Hemleben C, Van Hinte JE (1988) Biogeographic evidence from planktonic foraminifers and pteropods for Red Sea anti-monsoonal surface currents. In: Kroon D, Brummer G-JA (eds) Planktonic foraminifers as tracers of ocean-climate history. Free University Press, Amsterdam, pp 203–227

    Google Scholar 

  • Auras-Schudnagies A, Kroon D, Ganssen G, Hemleben C, Van Hinte JE (1989) Distributional pattern of planktonic foraminifers and pteropods in surface waters and top core sediments of the Red Sea, and adjacent areas controlled by the monsoonal regime and other ecological factors. Deep-Sea Res 36:1515–1533

    Article  Google Scholar 

  • Badawi A, Schmiedl G, Hemleben C (2005) Impact of late Quaternary environmental changes on deep-sea benthic foraminiferal faunas of the Red Sea. Mar Micropaleontol 58:13–30

    Article  Google Scholar 

  • Barmawidjaja DM, Jorissen FJ, Puscaric S, Van der Zwaan GJ (1992) Microhabitat selection by benthic foraminifera in the northeast Adriatic Sea. J Foraminifer Res 22:297–317

    Article  Google Scholar 

  • Bignell RD, Ali SS (1976) Geochemical and stratigraphy of Nerus Deep, Red Sea. Geol Jahrb D17:173–186

    Google Scholar 

  • Bonatti E, Colantoni P, Lucchini F, Rossi PL, Taviani M, White J (1986) Chemical and stable isotope aspect of the Nereus Deep (Red Sea) metal enriched sedimentation. Mem Soc Geol Italiana 27:59–72

    Google Scholar 

  • Buzas MA, Gibson TG (1969) Species diversity: benthonic foraminifera in western North Atlantic. Science 163:72–75

    Article  Google Scholar 

  • Cimerman F, Langer MR (1991) Mediterranean foraminifera: Slovenian Academy of Science and Arts and Swiss Academy of Natural Sciences, Ljubljana, 118 p.

  • Clarke KR, Warwick RM (1994) Change in marine communities: an approach to statistical analysis and interpretation. Primer, version 4.0. Plymouth Marine Laboratory, Plymouth, p 144

    Google Scholar 

  • Corliss BH (1991) Morphology and microhabitat preferences of benthic foraminifera from the northwest Atlantic Ocean. Mar Micropaleontol 17:195–236

    Article  Google Scholar 

  • De Rijk S, Jorissen FJ, Rohling EJ, Troelstra SR (2000) Organic flux control on bathymetric zonation of Mediterranean benthic foraminifera. Mar Micropaleontol 40:151–166

    Article  Google Scholar 

  • Edelman-Fürstenberg Y, Scherbacher M, Hemleben C, Almogi-Labin A (2001) Deep-sea benthic foraminifera from the central Red Sea. J Foraminifer Res 31:48–59

    Article  Google Scholar 

  • Edelman-Fürstenberg Y, Almogi-Labin A, Hemleben C (2009) Palaeoceanographic evolution of the central Red Sea during the late Holocene. The Holocene 19:117–127

    Article  Google Scholar 

  • Eshel G, Cane MA, Blumenthal MB (1994) Modes of subsurface, intermediate, and deep water renewal in the Red Sea. J Geophys Res 99:15,941–15,952

    Article  Google Scholar 

  • Fenton M, Geiselhart S, Rohling EJ, Hemleben C (2000) Aplanktonic zones in the Red Sea. Mar Micropaleontol 40:277–294

    Article  Google Scholar 

  • Fisher RA, Corbet AS, Williams CB (1943) The relationship between the number of species and the number of individuals in a random sample of an animal population. J Anim Ecol 12:42–58

    Article  Google Scholar 

  • Geiselhart S (1998) Late quaternary paleoceanographic and paleoclimatologic history of the Red Sea during the last 380,000 years: evidence from stable isotopes and faunal assemblages, Ph.D. Thesis, Institut und Museum für Geologie und Paläontologie der Universität Tübingen, 87 p

  • Gooday AJ, Bett BJ, Shires R, Lambshead PJD (1998) Deep-sea benthic foraminiferal species diversity in the NE Atlantic and NW Arabian Sea: a synthesis. Deep-Sea Res PT II 45:165–201

    Article  Google Scholar 

  • Halicz E, Reiss Z (1979) Recent Textulariidae from the Gulf of Elat (Aqaba), Red Sea. Rev Esp Micropaleontol 11:295–320

    Google Scholar 

  • Halicz E, Reiss Z (1981) Paleoecological relations of foraminifera in a desert-enclosed sea–The Gulf of Aqaba (Elat), Red Sea. Mar Ecol 2:15–34

    Article  Google Scholar 

  • Hartmann M, Scholten JC, Stoffers P, Whener F (1998) Hydrographic structure of brine-filled Deeps in the Red Sea—new results from the Shaban, Kebrit, Atlantis II, and Discovery Deep. Mar Geol 144:311–330

    Article  Google Scholar 

  • Heiri O, Lotter AF, Lemcke G (2001) Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. J Paleolimnol 25:101–110

    Article  Google Scholar 

  • Hemleben C, Spindler M, Anderson OR (1989) Modern planktonic foraminifera. Springer, New York, p 363

    Book  Google Scholar 

  • Hottinger L, Halicz E, Reiss Z (1993) Recent Foraminiferida, Gulf of Aqaba, Red Sea. Opera Academia Scientiarum et Artium Slovenica, Classis IV: Historia Naturalis 33, Paleontological Institute “Ivan Rakovec” 3

  • Jones RW (1994) The challenger foraminifera. Oxford University Press, Oxford, p 149

    Google Scholar 

  • Jorissen FJ (1999) Benthic foraminiferal successions across Late Quaternary Mediterranean Sapropels. Mar Geol 153:91–103

    Article  Google Scholar 

  • Jorissen FJ, De Stigter HC, Widmark JGV (1995) A conceptual model explaining benthic foraminifera microhabitats. Mar Micropaleontol 26:3–15

    Article  Google Scholar 

  • Loeblich AR, Tappan H (1987) Foraminiferal genera and their classification. Van Nostrand Reinhold, NewYork, p 970

    Google Scholar 

  • Miller AR, Densmore CD, Degens ET, Hathaway JC, Manheim FT, McFarlin PF, Pocklington H, Jokela A (1966) Hot brines and recent iron deposits in deeps of the Red Sea. Geochim Cosmochim Acta 42:1103–1115

    Google Scholar 

  • Morcos SA (1970) Physical and chemical oceanography of the Red Sea. Oceanogr Mar Biol Ann Rev 8:73–202

    Google Scholar 

  • Neumann AC, McGill DA (1962) Circulation of the Red Sea in early summer. Deep-Sea Res 8:223–235

    Google Scholar 

  • Patterson RT, Guilbault J-P, Thomson RE (2000) Oxygen level control on foraminiferal distribution in Effingham Inlet, Vancouver Island, British Columbia, Canada. J Foraminifer Res 30:321–335

    Article  Google Scholar 

  • Pätzold J, Bohrmann G, Hübscher C (2003) Black Sea–Mediterranean–Red Sea, Cruise No. 52, January 2–March 27, 2002. METEOR-Berichte, Universität Hamburg, 03-2, pp 62. Available under http://www.marum.de/M52_-_Schwarzes_Meer_-_Mittelmeer_-_Rotes_Meer.html

  • Perelis L, Reiss Z (1975) Cibicididae in recent sediments from the Gulf of Elat. Isr J Earth Sci 24:73–96

    Google Scholar 

  • Pfannkuche O (1993) Benthic standing stock and metabolic activity in the bathyal Red Sea from 17N to 27N: P.S.Z.N.I. Mar Ecol 14:67–79

    Article  Google Scholar 

  • Phipps M, Jorissen F, Pusceddus A, Bianchelli S, De Stigter H (2012) Live benthic foraminiferal faunas along a bathymetrical transect (282–4987 m) on the Portuguese margin (NE Atlantic). J Foraminifer Res 42:66–81

    Article  Google Scholar 

  • Pielou EC (1966) The measurement of diversity in different types of biological collections. J Theor Biol 13:131–144

    Article  Google Scholar 

  • Reiss Z, Hottinger L (1984) The Gulf of Aqaba, ecological micropaleontology. Ecological studies, v. 50. Springer Verlag, Berlin

    Google Scholar 

  • Rihm R, Henke CH (1998) Geophysical studies on early tectonic controls of Red Sea rifting, opening and sedimentation. In: Purser BH, Bosence DWJ (eds) Sedimentation and tectonics in Rift Basin: Red Sea-Gulf of Aden. Chapman and Hall, pp 27-48

  • Rohling EJ (1994) Review and new aspects concerning the formation of eastern Mediterranean sapropels. Mar Geol 122:1–28

    Article  Google Scholar 

  • Rohling EJ, Zachariasse WJ (1996) Red Sea outflow during the last glacial maximum. Quat Int 31:77–83

    Article  Google Scholar 

  • Rohling EJ, Fenton M, Jorissen FJ, Bertrand P, Ganssen G, Caulet JP (1998) Magnitudes of sea-level lowstands of the past 500,000 years. Nature 394:162–165

    Article  Google Scholar 

  • Rossignol-Strick M (1987) Rainy periods and bottom water stagnation initiating brine accumulation and metal concentrations: 1. The Late Quaternary. Paleoceanography 2:33–360

    Google Scholar 

  • Said R (1949) Foraminifera of the Northern Red Sea. Cushman Found Foraminifer Res Spec Publ 26:1–43

    Google Scholar 

  • Said R (1950) The distribution of foraminifera in the northern Red Sea. Cont Cushman Found Foraminifer Res 1:9–29

    Google Scholar 

  • Schoell M, Risch H (1976) Oxygen and carbon isotope analyses on planktonic foraminifera of core VA 01-188 P (Southern Red Sea). Geol Jahrb D17:15–32

    Google Scholar 

  • Seeberg-Elverfeldt IA, Lange CB, Pätzold J, Kuhn G (2005) Laminae type and possible mechanisms for the formation of laminated sediments in the Shaban Deep, northern Red Sea. Ocean Sci 1:113–126

    Article  Google Scholar 

  • Siccha M, Trommer G, Schulz H, Hemleben C, Kucera M (2009) Factors controlling the distribution of planktonic foraminifera in the Red Sea and implications for the development of transfer functions. Mar Micropaleontol 72:146–156

    Article  Google Scholar 

  • Siddall M, Smeed DA, Hemleben C, Rohling EJ, Schmelzer I, Peltier WR (2004) Understanding the Red Sea response to sea level. Earth Planet Sci Let 225:421–434

    Article  Google Scholar 

  • Siedler G (1969) General circulation of water masses in the Red Sea. In: Degens ET, Ross DA (eds) Hot brines and recent heavy metal deposits in the Red Sea. Springer, Berlin, pp 131–137

    Google Scholar 

  • Smeed DA (1997) Seasonal variation of the flow in the strait of Bab al Mandab. Oceanol Acta 20:773–781

    Google Scholar 

  • Sofianos SS, Johns WE, Murray SP (2002) Heat and freshwater budgets in the Red Sea from direct observations at Bab el Mandeb. Deep-Sea Res PT II 49:1323–1340

    Article  Google Scholar 

  • Weikert H (1987) Plankton and the pelagic environment. In Edwards FJ, Head SM (eds) Red Sea (key environments). Pergamon Press, Oxford, pp 90–111

  • Werner F, Lange K (1975) A bathymetric survey of the sill area between the Red Sea and the Gulf of Aden. Geol Jahrb 13:125–130

    Google Scholar 

  • Whitmarsh RB (1974) Summary of general features of Arabian Sea and Red Sea Cenozoic history based on Leg 23 cores. In: Whitmarsh R, Weser O, Ross D (eds) Initial rep DSDP 23. US Government Printing Office, Washington, pp 1115–1123

    Google Scholar 

  • Winckler G, Kipfer R, Aeschenbach-Hertig W, Botz R, Schmidt M, Schuler S, Bayer R (2000) Sub sea floor boiling of Red Sea Brines—new indication from noble gas data. Geochim Cosmochim Acta 64:1567–1575

    Article  Google Scholar 

  • Woelk S, Quadfasel D (1996) Renewal of deep water in the Red Sea during 1982–1987. J Geophys Res Oceans 101:18155–18165

    Article  Google Scholar 

  • Yassini I, Jones BG (1995) Recent foraminifera and ostracoda from estuarine and shelf environments on the southeastern coast of Australia. The University of Wollongong Press, Wollongong, p 484

    Google Scholar 

  • Zweig-Strykowski M, Reiss Z (1975) Bolivinitidae from the Gulf of Elat. Isr J Earth Sci 24:97–111

    Google Scholar 

Download references

Acknowledgments

I would like thank the King Abdulaziz University for providing a good financial support to accomplish this research. My gratitude is given to Dr. Radwan Al-Farawati for allowing me to use the top multicore sediment samples. Very useful comments were made for the early draft of this paper by Prof. Frans Jorissen. I thank also the Editor (Dr. Al-Amri) and the anonymous reviewers for comments and rapid revision.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramadan H. Abu-Zied.

Appendices

Appendix 1

Table 1 Coordinates of sample sites and census data of both benthic and planktonic foraminifera

Appendix 2

All taxa cited in this paper are listed alphabetically with original references and displayed in Figs. 4 and 6

Benthic foraminifera species:

  • Adercotryma glomerata (Brady) = Lituola glomerata Brady, 1878, p. 433, pl. 20, Figs. 1a–c.

  • Bolivina persiensis Lutze = B. persiensis Lutze, 1974, p. 25, pl. 5, Figs. 86–89, pl. 6, Fig. 98.

  • Brizalina earlandi (Parr) = B. earlandi Parr, 1950, pl. 12, Fig. 16a–c.

  • Brizalina spathulata (Williamson) = Textularia variabilis var. spathulata Williamson, 1858, p. 76, pl. 6, Figs. 164–165.

  • Brizalina subspathulata (Boomgart) = B. subspathulata Boomgart, 1949, pl. 12, Fig. 4.

  • Buccella granulata (Di Napoli Alliata) = Eponides frigidus granulatus Di Napoli Alliata, 1952, p. 103, 107, pl. 5, Fig. 3.

  • Bulimina marginata d’Orbigny = B. marginata d’Orbigny, 1926, p. 269, pl. 12, Figs. 10–12.

  • Cassidelina spinescens (Cushman) = Bolivina spinescens Cushman, 1911, p. 46, Fig. 76.

  • Cibicides mabahethi Said = Cibicides mabahethi Said, 1949, p. 42, pl.4, Fig. 20

  • Discorbinella bertheloti (d’Orbigny) = Rosalina bertheloti d’Orbigny, 1839, p. 135, pl. 1, Figs. 28–30.

  • Discorbinella rhodiensis (Terquem) = Truncatulina rhodiensis Terquem, 1878, p. 21, pl. 1, Fig. 26.

  • Eggerella australis Collins = E. australis Collins, 1958, p. 356, pl. 2, Figs. 1a–b.

  • Globocassidulina subglobosa (Brady) = Cassidulina subglobosa Brady, 1884, p. 430, pl. 54, Figs. 17a–c.

  • Glomospira charoides (Jones and Parker) = Trochammina squamata var. charoides Jones and Parker, 1860, p. 304.

  • Gyroidinoides soldanii (d’Orbigny) = Gyroidina soldanii d’Orbigny, 1826, p. 278, no. 5.

  • Haplophragmoides bradyi (Robertson) = Trochammina bradyi Robertson, 1891, p. 388.

  • Islandiella californica (Cushman and Hughes) = Cassidulina californica Cushman and Hughes, 1925, p. 5, pl. 2, Fig. 1.

  • Islandiella helenae Feyling-Hanssen and Buzas = I. helenae Feyling-Hanssen and Buzas, 1976, p. 155, text-Figs. 1–4.

  • Melonis novozealandicum (Cushman and Edwards) = Astrononion novozealandicum Cushman and Edwards, 1937, p. 35, pl. 3, Figs. 18a–b. It is a synonym of Melonis paraffinis Yassini and Jones, 1995, p. 171, Figs. 940, 944–945.

  • Miliolinella irregularis (d’Orbigny) = Biloculina irregularis d’Orbigny, 1839, p. 67, pl. 8, Figs. 20, 21.

  • Neoconorbina marginata Hofker = N. marginata Hofker, 1951, p. 435, Figs. 298–299.

  • Neouvigerina ampullacea (Brady) = Uvigerina asperula Czjzek var. ampullacea Brady, 1884, p. 579, pl. 75, Figs. 10–11.

  • Neouvigerina porrecta (Brady) = Uvigerina porrecta Brady, 1879, p. 274, pl. 8, Figs. 15–16.

  • Pseudoeponides falsobeccarii Rouvillois = P. falsobeccarii Rouvillois, 1974, p. 4, pl. 1, Figs. 1–12.

Rosalinid. It is a group of many unidentified species.

  • Spirophthalmidium acutimargo (Brady) = S. acutimargo Brady, 1884, p. 154, pl. 10, Figs. 12–15.

  • Textularia cushmani Said = T. cushmani Said, 1949, p. 7, pl. 1, Fig. 13.

  • Triloculina trigonula (Lamarck) = Miliolites trigonula Lamarck, 1804, p. 351.

  • Trochammina pacifica Cushman = T. pacifica Cushman, 1925, p. 39, pl. 6, Fig. 3.

Planktonic foraminifera species:

  • Gallitellia vivans (Cushman) = Guembelitria vivans Cushman, 1934, p. 105, pl. 13, Figs. 9–10.

  • Globigerinella calida (Parker) = G. calida Parker, 1962, p. 221, pl. 1, Figs. 9–13, 15.

  • Globigerinella siphonifera (d’Orbigny) = G. siphonifera d’Orbigny, 1839, p. 183, pl. 4, Figs. 15–18.

  • Globigerinita glutinata (Egger) = G. glutinata Egger, 1893, p. 371, pl. 13, Figs. 19–21.

  • Globigerinoides elongatus (d’Orbigny) = Globigerina elongata d’Orbigny, 1826, p. 277, list no. 4.

  • Globigerinoides ruber (d’Orbigny) = Globigerina rubra d’Orbigny, 1839, p. 82, pl. 4, Figs. 12–14.

  • Globigerinoides sacculifer (Brady, 1877) = Globigerina sacculifera Brady, 1877, p. 535.

  • Globorotalia scitula (Brady) = Pulvinulina scitula Brady, 1882, p. 716–717.

  • Globoturborotalita rubescens (Hofker) = Globigerina rubescens Hofker, 1956, p. 234, pl. 35, Figs. 18–21.

  • Globoturborotalita tenella (Parker) = Globigerinoides tenellus Parker, 1958, pl. 6, Figs. 7–11.

  • Orbulina universa d’Orbigny = Orbulina universa d’Orbigny, 1839, p. 3, pl. 1, Fig. 1.

  • Turborotalia clarkei (Rögl and Bolli) = Globigerina clarkei Rögl and Bolli, 1973, p. 563, pl. 4, Figs. 13–15.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abu-Zied, R.H. Effect of the Red Sea brine-filled deeps (Shaban and Kebrit) on the composition and abundance of benthic and planktonic foraminifera. Arab J Geosci 6, 3809–3826 (2013). https://doi.org/10.1007/s12517-012-0641-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12517-012-0641-3

Keywords

Navigation