Skip to main content
Log in

Pan-African (intraplate and subduction-related?) metasomatism in the Fawakhir ophiolitic serpentinites, Central Eastern Desert of Egypt: mineralogical and geochemical evidences

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

Fawakhir serpentinites are the most western ophiolitic ultramafics relative to the Pan-African collision suture at the Qift-Quseir road in the Central Eastern Desert of Egypt. Their location is the basis for their selection in examining the possible contribution of the westerly dipping subducted oceanic slab-related melt/fluid with the intraplate granitic intrusion-related melt/fluid in the metasomatism of the Neoproterozoic ophiolitic serpentinites in the Eastern Desert. Non-residual mineralogy and geochemistry of serpentinites (SF1) far from the post-collision A2-type Fawakhir granitoids and those of serpentinites (SF2) in the vicinity of the granitoid pluton were investigated. The Fawakhir serpentinites are harzburgitic in composition and the Cr# (0.66–0.80) and Mg# (0.32–0.50) of their unaltered spinel cores are indicators for their forearc setting, where they were formed in the oceanic mantle wedge. Based on the spinel Cr# and the whole rock Yb–V bivariate, the melt extraction from the primitive mantle is in excess of 18% up to 24%. The HREE pattern of the SF1 serpentinites refers to the fractional type of melting. The formation of non-residual mineral phases particularly in SF2 samples (amphibole, biotite, apatite thorite, and monazite) and the enrichment of all serpentinites in trace incompatible elements refer to these two serpentinite groups having underwent modal metasomatism. It is suggested that viscous fluid/melt related to the Fawakhir granitoid emplacement metasomatized the SF2 serpentinites, causing a strong enrichment in LREE (display concave LREE; LaN/SmN = 3.32–6.25 and U-type HREE; GdN/YbN = 1.14–2.69) and a slight enrichment in Zr (12–16.62 ppm). All serpentinites are enriched in fluid-mobile elements by aqueous fluids, but the SF2 are more enriched in these elements. The spiked B compared to the other fluid-mobile elements (16.97–24.61 and 42.94–60.66 × PM in SF1 and SF2 samples, respectively) suggests that these elements were added to the obducted ophiolitic Fawakhir serpentinites by the percolation of subduction-related fluids at shallow depths. The contribution of B from shallow continental crust-related fluids is debated. Hosting the Fawakhir serpentinites for the gold deposit at Fawakhir Mine implies a possible genetic relation between gold mineralizations hosted in the ultramafic rocks of the ANS and the processes of recycling of the subducted oceanic slab and the interaction with the mantle. Detailed stable and radiogenic isotopic analyses of the mineralization zones are required to address this question.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Abd El-Rahman Y, Polat A, Dilek Y, Fryer BJ, El-Sharkawy M, Sakran Sh (2009) Geochemistry and tectonic evolution of the Neoproterozoic incipient arc–forearc crust in the Fawakhir area, Central Eastern Desert of Egypt. Precambrian Res 175:116–134

    Article  Google Scholar 

  • Abdel Aal AY, Farahat ES, Hoinkens G, El-Mahalawi MM (2003) Ophiolites from the Egyptian Shield: a case for a possible inter-arc origin. Mitt Oesterr Ges 148:81–83

    Google Scholar 

  • Abu El Ela AM (1996) Contribution to mineralogy and geochemistry of some serpentinites from the Eastern Desert of Egypt. M.E.R.C. Ain Shams University. Earth Sci 10:1–25

    Google Scholar 

  • Abzalov MZ (1998) Chrome-spinel in gabbro-wehrlite intrusions of the Pechenga area, Kola Peninsula, Russia: emphasis on alteration features. Lithos 43:109–134

    Article  Google Scholar 

  • Agranier A, Lee C-T A, Li Z-X A, Leeman WP (2007) Fluid mobile element budgets in serpentinized oceanic lithospheric mantle: insights from B, As, Li, Pb, PGEs and Os isotopes in the Feather River Ophiolite, California. Chem Geol 245:230–241

    Article  Google Scholar 

  • Ahmed AH, Arai S, Abdel-Aziz YM, Rahimi A (2005) Spinel composition as a petrogenetic indicator of the mantle section in the Neoproterozoic Bou Azzer ophiolite, Anti-Atlas, Morocco. Precambrian Res 138:225–234

    Article  Google Scholar 

  • Ahmed AH, Hanghøj K, Kelemen PB, Hart SR, Arai S (2006) Osmium isotope systematics of the Proterozoic and Phanerozoic ophiolitic chromitites: in situ ion probe analysis of primary Os-rich PGM. Earth Planet Sci Lett 245:777–791

    Article  Google Scholar 

  • Akaad MK (1997) On the behavior of serpentinites and its implications. Geol Surv, Egypt, Paper, 74

    Google Scholar 

  • Akaad MK, Abu El Ela AM (2002) Geology of the basement rocks in the eastern half of the belt between latitudes 25°30′ and 26°30′N central Eastern Desert, Egypt. Geol Surv, Egypt Paper 78

    Google Scholar 

  • Alard O, Bodinier J-L, Lenoir X, Dautria J-M (1999) Uranium enrichment in the lithospheric mantle: evidence from French Massif Central. Ofioliti 24:50

    Google Scholar 

  • Aldanmaz E, Schmidt MW, Gourgaud A, Meisel T (2009) Mid-ocean ridge and supra-subduction geochemical signatures in spinel–peridotites from the Neotethyan ophiolites in SW Turkey: implications for upper mantle melting processes. Lithos 113:691–708. doi:10.1016/j.lithos.2009.03.010

    Article  Google Scholar 

  • Allégre CJ, Minster JF (1978) Quantitative models of trace element behavior in magmatic processes. Earth Planet Sci Lett 38:1–25

    Article  Google Scholar 

  • Andresen A, Abu El-Rus MA, Myhre PI, Boghdady GY, Corfu F (2009) U–Pb TIMS age constraints on the evolution of the Neoproterozoic Meatiq Gneiss Dome, Eastern Desert, Egypt. Int J Earth Sci 98:481–497

    Article  Google Scholar 

  • Arai S (1992) Chemistry of chromian spinel in volcanic rocks as a potential guide to magma chemistry. Mineral Mag 56:173–184

    Article  Google Scholar 

  • Ayers J (1998) Trace element modeling of aqueous fluid–peridotite interaction in the mantle wedge of subduction zones. Contrib Mineral Petrol 132:390–404

    Article  Google Scholar 

  • Azer MK, Khalil AE (2005) Petrological and mineralogical studies of Pan-African serpentinites at Bir Al-Edeid area, central Eastern Desert. Egypt J Afr Earth Sci 43:525–536

    Article  Google Scholar 

  • Azer MK, Stern RJ (2007) Neoproterozoic (835–720 Ma) serpentinites in the Eastern Desert, Egypt: fragments of forearc mantle. Geology 115:457–472

    Article  Google Scholar 

  • Barnes SJ (2000) Chromite in komatites. II. Modifications during greenschist to midamphibolite facies metamorphism. J Petrol 41:387–409

    Article  Google Scholar 

  • Barnes SJ, Roeder PL (2001) The range of spinel compositions in terrestrial mafic and ultramafic rocks. J Petrol 42:2279–2302

    Article  Google Scholar 

  • Bebout GE (2007) Metamorphic chemical geodynamics of subduction zones. Earth Planet Sci Lett 260:373–393

    Article  Google Scholar 

  • Benton LD, Ryan JG, Tera F (2001) Boron isotope systematics of slab fluids as inferred from a serpentine seamount, Mariana forearc. Earth Planet Sci Lett 187:273–282

    Article  Google Scholar 

  • Bentor YK (1985) The crustal evolution of the Arabian–Nubian Massif with special reference to the Sinai Peninsula. Precambrian Res 28:1–74

    Article  Google Scholar 

  • Bliss NW, Maclean WH (1975) The paragenesis of zoned chromite from central Manitoba. Geochim Cosmochim Acta 39:973–990

    Article  Google Scholar 

  • Boynton WV (1984) Cosmochemistry of the rare earth elements: meteorite studies. In: Henderson P (ed) Rare earth element geochemistry. Elsevier, Amsterdam, pp 63–114

    Google Scholar 

  • Brenan JM, Shaw HF, Ryerson FJ, Phinney DL (1995) Mineral–aqueous fluid partitioning of trace elements at 900°C and 2.0 GPa: constraints on the trace element chemistry of mantle and deep crustal fluids. Geochim Cosmochim Acta 59:3331–3350

    Article  Google Scholar 

  • Brenan JM, Ryerson FJ, Shaw HF (1998) The role of aqueous fluids in the slab-to-mantle transfer of boron, beryllium and lithium during subduction: experiments and models. Geochim Cosmochim Acta 62:3337–3347

    Article  Google Scholar 

  • Cathelineau M (1986) The hydrothermal alkali metasomatism effects on granitic rocks: quartz dissolution and related subsolidus changes. J Petrol 27:945–965

    Article  Google Scholar 

  • Chaussidon M, Libourel G (1993) Boron partitioning in the upper mantle: an experimental and ion probe study. Geochim Cosmochim Acta 57:5053–5062

    Article  Google Scholar 

  • Davies JH, Stevenson DJ (1992) Physical model of source region of subduction zone volcanics. J Geophys Res 97:2037–2070

    Google Scholar 

  • Dawson JB (1984) Contrasting types of upper mantle metasomatism? In: Kornprobst J (ed) Kimberlites II: the mantle and crust–mantle relations, developments in petrology. Elsevier, Amsterdam, pp 277–287

    Google Scholar 

  • De la Roche H, Leterrier J, Grand Claude P, Marchal M (1980) A classification of volcanic and plutonic rocks using R1–R2 diagrams and major element analyses—its relationships and current nomenclature. Chem Geol 29:183–210

    Article  Google Scholar 

  • Deschamps F, Guillot S, Godard M, Chauvel C, Andreani M, Hattori K (2010) In situ characterization of serpentinites from forearc mantle wedges: timing of serpentinization and behavior of fluid-mobile elements in subduction zones. Chem Geol 269:262–277

    Article  Google Scholar 

  • Dick HJB, Bullen T (1984) Chromium spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas. Contrib Mineral Petrol 86:54–76

    Article  Google Scholar 

  • Eby GN (1992) Chemical subdivision of the A-type granitoids: petrogenetic and tectonic implications. Geology 20:641–644

    Article  Google Scholar 

  • El Bahariya GA, Arai S (2003) Petrology and origin of Pan-African serpentinites with particular reference to chromain spinel composition, Eastern Desert, Egypt: implication for supra-subduction zone ophiolite. In: 3rd International Conference on the Geology of Africa. Assiut University, Egypt, pp 371–388

    Google Scholar 

  • El Shazly SM (1976) Mineralogical and geochemical studies on the Fawakhir granitic pluton, Eastern Desert, Egypt. M.Sc. thesis. Alexandria University, Egypt, p 152

    Google Scholar 

  • El-Bayoumi RMA, Greiling RO (1984) Tectonic evolution of a Pan-African plate margin in southeastern Egypt—a suture zone overprinted by low angle thrusting? In: Klerkx J, Michot J (eds) Géologie Africaine (African geology). Museeroyal de l’Africaine Centrale, Tervuren, pp 47–56

    Google Scholar 

  • El-Gaby S (2005) Integrated evolution and rock classification of the Pan-African belt in Egypt. First Symposium on the Classification of the Basement Complex of Egypt, pp 1–9

  • El-Gaby S, List FK, Tehrani R (1988) Geology, evolution and metallogenesis of the Pan-African belt in Egypt. In: El-Gaby S, Greiling RO (eds) The Pan-African Belt of Northeast Africa and adjacent areas: tectonic evolution and economic aspects of a Late Proterozoic Orogen. Vieweg, Wiesbaden, pp 17–68

    Google Scholar 

  • El-Gaby S, List FK, Tehrani R (1990) The basement complex of the Eastern Desert and Sinai. In: Said R (ed) The geology of Egypt. AA Balkema, Rotterdam, pp 175–184

    Google Scholar 

  • Eliwa HA, Kimura JI, Itaya T (2006) Late Neoproterozoic Dokhan volcanic rocks, northern Eastern Desert, Egypt. Precambrian Res 151:31–52

    Article  Google Scholar 

  • El-Sayed MM (2003) Neoproterozoic magmatism in NW Sinai, Egypt: magma source and evolution of collision-related intracrustal anatectic leucogranite. Int J Earth Sci 92:145–164

    Google Scholar 

  • El-Sayed MM, Furnes H, Mohamed FH (1999) Geochemical constraints on the tectonomagmatic evolution of the late Precambrian Fawakhir ophiolite, Central Eastern Desert, Egypt. J Afr Earth Sci 29:515–533

    Article  Google Scholar 

  • Ernst WG, Piccardo GB (1979) Petrogenesis of some Ligurian peridotites. I. Mineral and bulk-rock chemistry. Geochim Cosmochim Acta 43:219–237

    Article  Google Scholar 

  • Farahat ES, El-Mahalawi MM, Hoinkes G (2004) Continental back-arc basin origin of some ophiolites from the Eastern Desert of Egypt. Miner Petrol 82:81–104

    Article  Google Scholar 

  • Farahat ES, Shaaban MM, Abdel Aal AY (2007a) Mafic xenoliths from Egyptian Tertiary basalts and their petrogenetic implications. Gondwana Res 11:516–528

    Article  Google Scholar 

  • Farahat ES, Mohamed HA, Ahmed AF, El Mahallawi MM (2007b) Origin of I- and A-type granitoids from the Eastern Desert of Egypt: implications for crustal growth in the northern Arabian–Nubian Shield. J Afr Earth Sci 49:43–58

    Article  Google Scholar 

  • Gao S, Luo T-C, Zhang B-R, Zhang HF, Han Y-W, Zhao ZD, Hu Y-K (1998) Chemical composition of the continental crust as revealed by studies in East China. Geochim Cosmochim Acta 62:1959–1975

    Article  Google Scholar 

  • Gass IG (1982) Upper Proterozoic (Pan-African) calc-alkaline magmatism in northeastern Africa and Arabia. In: Thorpe RS (ed) Orogenic andesites and related rocks. Wiley, New York, pp 591–609

    Google Scholar 

  • Goldfarb RJ, Groves DI, Gardoll S (2001) Orogenic gold and geologic time: a global synthesis. Ore Geol Rev 18:1–75

    Article  Google Scholar 

  • Greiling RO, Abdeen MM, Dardir AA, El Akhal H, El Ramly MF, Kamal El Din GM, Osman AF, Rashwan AA, Rice AHN, Sadek MF (1994) A structural synthesis of the Proterozoic Arabian–Nubian Shield in Egypt. Int J Earth Sci 83:484–501

    Google Scholar 

  • Hamdy MM, Aly GA (2011) Preliminary results of a first record of gold and uranium in marble from Central Eastern Desert, Egypt: a witness for (syn- and post-?) metamorphic mineralization in metasediments. Arab J Geosci 4:25–43

    Article  Google Scholar 

  • Hamdy MM, Lebda EM (2007) Metamorphism of ultramafic rocks at Gebel Arais and Gebel Malo Grim, Eastern Desert, Egypt: mineralogical and O–H stable isotopic constraints. Egypt J Geol 51:105–124

    Google Scholar 

  • Hamdy MM, Meisel T (2002) Metasomatism in the upper mantle beneath the Sudetes (SW Poland): mineralogical and geochemical constraints. MSP, Special Papers 20:100–102

    Google Scholar 

  • Hamdy MM, Harraz HZ, Aly GA, El-Abd AA (2008) Constraints on the subduction-related mineralizing fluids at El Sid Gold Mine District, Eastern Desert-Egypt: evidence from trace elements and mineral chemical characteristics of the mafic and ultramafic rocks. 8th International Conference on Geochemistry, Alexandria University (August 26–28), pp 53–54

  • Harraz HZ (2000) A genetic model for a mesothermal Au deposit: evidence from fluid inclusions and stable isotopic studies at El Sid Gold Mine, Eastern Desert, Egypt. J Afr Earth Sci 30:267–282

    Article  Google Scholar 

  • Harraz HZ, Ashmawy MH (1994) Structural and lithogeochemical constraints on the localization of gold deposits at the El Sid-Fawakhir Gold Mine area, Eastern Desert, Egypt. Egypt J Geol 38:629–648

    Google Scholar 

  • Harraz HZ, El-Dahhar MA (1993) Nature and composition of gold-forming fluids at Umm Rus area, Eastern Desert, Egypt: evidence from fluid inclusions in vein materials. J Afr Earth Sci 16:341–353

    Article  Google Scholar 

  • Hart SR, Zindler A (1986) In search of a bulk-Earth composition. Chem Geol 57:247–267

    Article  Google Scholar 

  • Harte B (1983) Mantle peridotites and processes; the kimberlite sample. In: Hawkesworth CJ, Norry MJ (eds) Continental basalts and mantle xenoliths. Shiva, Norwich, pp 477–506

    Google Scholar 

  • Hassan MA, Hashad AH (1990) Precambrian of Egypt. In: Said R (ed) The geology of Egypt. Balkema, Rotterdam, pp 201–245

    Google Scholar 

  • Hassanen MA (1985) Petrology and geochemistry of ultramafic rocks in the Eastern Desert, Egypt, with special reference to Fawakhir area. Ph.D. dissertation. Alexandria University, Egypt, 348 pp

    Google Scholar 

  • Hattori KH, Guillot S (2003) Volcanic fronts form as a consequence of serpentinite dehydration in the forearc mantle wedge. Geology 31:525–528

    Article  Google Scholar 

  • Hattori KH, Guillot S (2007) Geochemical character of serpentinites associated with high- to ultrahigh-pressure metamorphic rocks in the Alps, Cuba, and the Himalayas: recycling of elements in subduction zones. Geochem Geophys Geosyst 8. doi:10.1029/2007GC001594

  • Hattori K, Takahashi Y, Guillot S, Johanson B (2005) Occurrence of arsenic (V) in forearc mantle serpentinites based on X-ray absorption spectroscopy study. Geochim Cosmochim Acta 69:5585–5596

    Article  Google Scholar 

  • Hawkesworth CJ, Turner SP, McDermott F, Peate DW, Van Calsteren P (1997) U–Th isotopes in Arc magmas: implications for element transfer from the subducted crust. Science 276:551–555

    Article  Google Scholar 

  • Hellebrand E, Snow JE, Dick HJ, Hofmann AW (2001) Coupled major and trace elements as indicators of the extent of melting in mid-ocean-ridge peridotites. Nature 410:677–681

    Article  Google Scholar 

  • Hussein AA (1990) Mineral deposits. In: Said R (ed) The geology of Egypt. Balkema, Rotterdam, pp 511–566

    Google Scholar 

  • Hussein AA, Ali MM, El Ramly MF (1982) A proposed new classification of the granites of Egypt. J Volcanol Geoth Res 14:187–198

    Article  Google Scholar 

  • Ionov DA, Hofmann AW (1995) Nb–Ta-rich mantle amphiboles and micas: implications for subduction-related metasomatic trace element fractionations. Earth Planet Sci Lett 131:341–356

    Article  Google Scholar 

  • Irvine TN (1967) Chromian spinel as a petrogenetic indicator: part II. Petrologic applications. Can J Earth Sci 4:71–103

    Article  Google Scholar 

  • Ishii T, Robinson PT, Maekawa H, Fiske R (1992) Petrological studies of peridotites from diapiric serpentinite seamounts in the Izu–Ogasawara–Mariana Forearc, Leg 125. In: Fryer P, Pearce JA, Stokking LB et al (eds) Proceeding of the ocean drilling program, scientific results, 125 College station, TX. pp 445–485. doi:10.2973/odp.proc.sr.125.147.1992

  • Johnson MC, Plank T (1999) Dehydration and melting experiments constrain the fate of subducted sediments. Geochem Geophys Geosyst 1, Paper no. 1999GC000014

  • Johnson KT, Dick HJ, Shimizu N (1990) Melting in the oceanic upper mantle: an ion microprobe study of diopsides in abyssal peridotites. J Geophys Res 95:2661–2678

    Article  Google Scholar 

  • Jöns N, Schenk V (2007) Relics of the Mozambique Ocean in the central Eastern African Orogen: evidence from the Vohibory Block of southern Madagascar. J Metamorph Geol 26:17–28

    Google Scholar 

  • Keppler H (1996) Constraints from partitioning experiments on the composition of subduction-zone-fluids. Nature 380:237–240

    Article  Google Scholar 

  • Khudeir AA, Asran HA (1992) Back-arc Wizr ophiolites at Wadi Um Gheig District, Eastern Desert, Egypt. Bull Fac Sci Assiut Univ 21:1–22

    Google Scholar 

  • Korzhinskii DS (1965) The theory of systems with perfectly mobile components and processes of mineral formation. Am J Sci 263:193–205

    Article  Google Scholar 

  • Krِöner A, Greiling RO, Reischmann T, Hussein IM, Stern RJ, Durr S, Kruger J, Zimmer M (1987) Pan-African crustal evolution in the Nubian segment of northeast Africa. In: Krِöner A (ed) Proterozoic lithospheric evolution. American Geophysical Union, Geodynamics Series 17:237–257

  • Kubo K (2002) Dunite formation processes in highly depleted peridotite: case study of the Iwanaidake peridotite, Hokkaido, Japan. J Petrol 43:423–448

    Article  Google Scholar 

  • Küster D, Harms U (1998) Post-collisional potassic granitoids from the southern and northern parts of the Late Neoproterozoic East Africa Orogen: a review. Lithos 45:177–195

    Article  Google Scholar 

  • Leeman W P (1996) Boron and other fluid-mobile elements in volcanic arc lavas: implications for subduction processes. Subduction top to bottom. In: Bebout GE et al (eds) American Geophysical Union Geophysical Monograph 96:269–276

  • Lenoir X, Garrido CJ, Bodinier JL, Dautria J-M (2000) Contrasting lithospheric domains beneath the Massif Central (France) revealed by geochemistry of peridotite xenoliths. Earth Planet Sci Lett 181:359–375

    Article  Google Scholar 

  • Li ZXA, Lee CTA (2006) Geochemical investigation of serpentinized oceanic lithospheric mantle in the Feather River Ophiolite, California: implications for the recycling rate of water by subduction. Chem Geol 235:161–185

    Article  Google Scholar 

  • Lyubetskaya T, Korenaga J (2007) Chemical composition of Earth's primitive mantle and its variance: 1. Method and results. J Geophys Res 112 (B03211). doi:10.1029/2005JB004223

  • Maury RC, Defant MJ, Joron J-L (1992) Metasomatism of the sub-arc mantle inferred from tracę elements in Philippine xenoliths. Nature 360:661–663

    Article  Google Scholar 

  • McCulloch MT, Gamble AJ (1991) Geochemical and geodynamical constraints on subduction zone magmatism. Earth Planet Sci Lett 102:358–374

    Article  Google Scholar 

  • McDonough WF, Sun S-S (1995) The composition of the Earth. Chem Geol 120:223–253

    Article  Google Scholar 

  • McKenzie D, O’Nions RK (1983) Mantle reservoirs and ocean island basalts. Nature 362:715–721

    Google Scholar 

  • Meisel T, Schöner N, Paliulionyte V, Kahr E (2002) Determination of rare earth elements (REE), Y, Th, Zr, Hf, Nb and Ta in geological reference materials g-2, G-3, Sco-1 and WGB-1 by sodium peroxide sintering and ICP-MS. Geostand Newsl 26:53–61

    Article  Google Scholar 

  • Melcher F, Meisel T, Puhl J, Koller F (2003) Petrogenesis and geotectonic setting of ultramafic rocks in the Eastern Alps: constraints from geochemistry. Lithos 65:69–112

    Article  Google Scholar 

  • Moghazi AM (1999) Magma source and evolution of late Neoproterozoic granitoids in the Gabal El Urf area, Eastern Desert, Egypt: geochemical and Sr–Nd isotopic constraints. Geol Mag 136:285–300

    Article  Google Scholar 

  • Moghazi AM (2003) Geochemistry and petrogenesis of a high K-calc-alkaline Dokhan volcanic suite. South Safaga area, Egypt: the role of late Neoproterozoic crustal extension. Precambrian Res 125:161–178

    Article  Google Scholar 

  • Mohamed FH (1999) The role of the restite-unmixing and restite remelting processes in the evolution of the post-collisional and anorogenic alkaline granites, Safaga area, Egypt: geochemical and petrogenetic implications. MERC Ain Shams Univ Earth Sci Ser 13:1–37

    Google Scholar 

  • Morgan Z, Liang Y (2002) An experimental and numerical study of the kinetics of harzburgite reactive dissolution with applications to dunite dike formation. Earth Planet Sci Lett 214:59–74

    Article  Google Scholar 

  • Nesbitt HW, Young GM (1982) Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 229:715–717

    Article  Google Scholar 

  • Neumann E-R, Wulff-Pedersen E, Pearson NJ, Spencer EA (2002) Mantle xenoliths from Tenerife (Canary Islands): evidence for reactions between mantle peridotites and silicic carbonatite melts inducing Ca metasomatism. J Petrol 43:825–857

    Article  Google Scholar 

  • Niu Y (2004) Bulk-rock major and trace element compositions of abyssal peridotites: implications for mantle melting, melt extraction and post-melting processes beneath mid-ocean ridges. J Petrol 45:2423–2458

    Article  Google Scholar 

  • Noll PD, Newsom HE Jr, Leeman WP, Ryan JG (1996) The role of hydrothermal fluids in the production of subduction zone magmas: evidence from siderophile and chalcophile trace elements and boron. Geochim Cosmochim Acta 60:587–611

    Article  Google Scholar 

  • Noweir AM, Sewifi BM, Abu El Ela AM (1990) Geology, petrography, geochemistry and petrogenesis of the Egyptian younger granites. Qatar Univ Sci Bull 10:363–393

    Google Scholar 

  • O’Hanley DS, Wicks FJ (1995) Conditions of formation of lizardite, chrysotile and antigorite, Cassiar, British Columbia. Can Mineral 33:753–773

    Google Scholar 

  • Parkinson IJ, Pearce JA (1998) Peridotites from Izu–Bonin–Mariana Forearc (ODP Leg 125): evidence for mantle melting and melt–mantle interaction in supra-subduction zone setting. J Petrol 39:1577–1618

    Article  Google Scholar 

  • Pearce J A (2003) Subduction zone ophiolites. In: Dilek Y, Newcomb S (eds) Ophiolite concept and the evolution of geological thought. Geol Soc Am Spec Pap 373:269–294

  • Pearce JA, Parkinson I J (1993) Trace element models for mantle melting: application to volcanic arc petrogenesis. In: Prichard HM, Alabaster T, Harris NBW, Neary CR (eds) Magmatic processes and plate tectonics. Geol Soc Lond, Special Publication 76:373–403

  • Pearce JA, Harris NBW, Tindle AG (1984) Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J Petrol 69:33–47

    Google Scholar 

  • Pearce JA, Barker PF, Edwards SJ, Parkinson IJ, Leat PT (2000) Geochemical and tectonic significance of peridotites from the South Sandwich arc–basin system, South Atlantic. Contrib Mineral Petrol 139:36–53

    Article  Google Scholar 

  • Phillips GN, Powell R (2009) Formation of gold deposits: review and evaluation of the continuum model. Earth Sci Rev. doi:10.1016/j.earscirev.2009.02.002

    Google Scholar 

  • Proenza JA, Ortega-Gutiérrez F, Camprubí A, Tritlla J, Elías-Herrera M, Reyes-Salas M (2004) Paleozoic serpentinite-enclosed chromitites from Tehuitzingo (Acatlán Complex, southern Mexico): a petrological and mineralogical study. JS Am Earth Sci 16:649–666

    Article  Google Scholar 

  • Prouteau G, Scaillet B, Pichavant M, Maury R (2001) Evidence for mantle metasomatism by hydrous silicic melts derived from subducted oceanic crust. Nature 8:197–200

    Article  Google Scholar 

  • Rapp RP, Shimizu N, Norman MD, Applegate GS (1999) Reaction between slab-derived melts and peridotite in the mantle wedge: experimental constraints at 3.8 GPa. Chem Geol 160:335–356

    Article  Google Scholar 

  • Roden MF, Murthy VR (1985) Mantle metasomatism. Annu Rev Earth Planet Sci 13:269–296

    Article  Google Scholar 

  • Ryan JG, Langmuir CH (1993) The systematics of boron abundance in young volcanic rocks. Geochim Cosmochim Acta 57:1489–1498

    Article  Google Scholar 

  • Salters V J M, Stracke A (2004) Composition of the depleted mantle. Geochem Geophys Geosyst 5. doi: 10.1029/2003GC000597

  • Savov IP, Ryan JG, D'Antonio M, Kelley K, Mattie P (2005) Geochemistry of serpentinized peridotites from the Mariana Forearc Conical Seamount, ODP Leg 125: implications for the elemental recycling at subduction zones. Geochem Geophys Geosyst 6. doi: 10.1029/2004GC000777

  • Scambelluri M, Rampone E, Piccardo GB (2001) Fluid and element cycling in subducted serpentinite: a trace-element study of the Erro-Tobbio high pressure ultramafites (Western Alps, NW Italy). J Petrol 42:55–67

    Article  Google Scholar 

  • Scambelluri M, Müntener O, Ottolini L, Pettke TT, Vannucci R (2004) The fate of B, Cl and Li in the subducted oceanic mantle and in the antigorite breakdown fluids. Earth Planet Sci Lett 222:217–234

    Article  Google Scholar 

  • Shaw DM (1970) Trace element fractionation during anatexis. Geochim Cosmochim Acta 34:237–243

    Article  Google Scholar 

  • Shervais JW, Kimbrough DL, Renne PR, Hanan BB, Murchey B, Snow CA, Schuman MMZ, Beaman J (2004) Multi-stage origin of the Coast Range ophiolite, California: implications for the life cycle of supra-subduction zone ophiolites. Int Geol Rev 46:289–315

    Article  Google Scholar 

  • Snow J, Dick H (1995) Pervasive magnesium loss by marine weathering of peridotite. Geochim Cosmochim Acta 59:4219–4235

    Article  Google Scholar 

  • Stein M, Navon O, Kessel R (1997) Chromatographic metasomatism of the Arabian–Nubian lithosphere. Earth Planet Sci Lett 152:75–91

    Article  Google Scholar 

  • Stern RJ (1994) Arc assembly and continental collision in the Neoproterozoic East African Orogen: implications for the consolidation of Gondwanaland. Annu Rev Earth Planet Sci 22:319–351

    Article  Google Scholar 

  • Stern RJ, Hedge CE (1985) Geochronologic and isotropic constraints in Late Precambrian crustal evolution in the Eastern Desert of Egypt. Am J Sci 285:97–127

    Article  Google Scholar 

  • Stern RJ, Johanson PR, Kroner A, Yibas B (2004) Neoproterozoic ophiolites of the Arabian–Nubian Shield. In: Kusky TM (ed) Precambrian ophiolites and related rocks. Developments in Precambrian geology, vol 13. Elsevier, Amsterdam, pp 95–128

    Chapter  Google Scholar 

  • Stevens RE (1944) Composition of some chromites of the Western Hemisphere. Am Mineral 29:1–34

    Google Scholar 

  • Streckeisen A (1976) Classification of the common igneous rocks by means of their chemical composition. A provisional attempt. Neues Jb Miner 1:1–15

    Google Scholar 

  • Thirlwall MF, Smith TE, Graham AM, Theodorou N, Hollings P, Davidson JP, Arculus RJ (1994) High field strength element anomalies in arc lavas: source or process? J Petrol 35:819–838

    Article  Google Scholar 

  • Wood BJ, Virgo D (1989) Upper mantle oxidation state: ferric iron contents of lherzolite spinels by 57 Fe Mössbauer spectroscopy and resultant oxygen fugacities. Geochim Cosmochim Acta 53:1277–1291

    Article  Google Scholar 

  • Workman RK, Hart SR (2005) Major and trace element composition of the depleted MORB mantle (DMM). Earth Planet Sci Lett 231:53–72

    Article  Google Scholar 

  • Wulff-Pedersen E, Neumann E-R, Vannucci R, Bottazzi P, Ottolini L (1999) Silicic melts produced by reaction between peridotite and infiltrating basaltic melts: ion probe data on glasses and minerals in veined xenoliths from La Palma, Canary Islands. Contrib Mineral Petrol 137:59–82

    Article  Google Scholar 

  • Zanetti A, Mazzucchelli C, Rivalenti G, Vannucci R (1999) The Finero phlogopite–peridotite massif: an example of subduction-related metasomatism. Contrib Mineral Petrol 134:107–122

    Article  Google Scholar 

Download references

Acknowledgement

The authors acknowledge Prof. T. Meisel, General and Analytical Chemistry, Leoben, for XRF and ICP-MS analyses of the serpentinite samples, Dr Katsuhiko Furuyama, Department of Geosciences, Graduate School of Science, Osaka City University, Osaka, Japan, for help with XRF analyses of the granite samples, and Dr. T. Abu Alam, Institute of Earth Sciences, Karl Franzens University of Graz, for help with the EMPA of spinel. The manuscript benefited from the comments and suggestions of an anonymous reviewer. Chief editor Prof. A. Al-Amri is thanked for handling the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed M. Hamdy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hamdy, M.M., Harraz, H.Z. & Aly, G.A. Pan-African (intraplate and subduction-related?) metasomatism in the Fawakhir ophiolitic serpentinites, Central Eastern Desert of Egypt: mineralogical and geochemical evidences. Arab J Geosci 6, 13–33 (2013). https://doi.org/10.1007/s12517-011-0319-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12517-011-0319-2

Keywords

Navigation