Skip to main content

Advertisement

Log in

Encapsulation of Functional Lipophilic Food and Drug Biocomponents

  • Review Article
  • Published:
Food Engineering Reviews Aims and scope Submit manuscript

Abstract

Lipophilic biocomponents pose a real challenge to food and drug researchers because they have weak solubility in water and cannot be easily included into the food and drug matrix. Biomaterials with new functional properties, i.e. biodegradable, biocompatible and stimulus responsive, have been tested for the purpose of improving the solubility and bioavailability of lipophilic components in recent years. Also, high-performance micro- and nanotechnologies were involved. These were used to prepare microcapsules and nanocarriers with multiple applications in food industry and pharmacy. The micro- and nano-encapsulation of lipophilic components is used to increase and maintain solubility in physiological fluids or the food matrix, to improve bioavailability and to protect the bioactive compounds against the aggression of some factors such as pH, enzymes, temperature, light and oxygen. The microcapsule and nanocarrier delivery systems guarantee the controlled and targeted delivery of bioactive molecules, thus increasing the therapeutic potential of drugs, along with food safety and security. The purpose of this review is to synthesize the newest information about the lipophilic biocomponents’ encapsulation. The first part of the paper is devoted to data on the solubility and bioavailability of lipophilic components used for food and drug formulations. The second part deals with the main methods of lipophilic compounds encapsulation, evincing the preparation of nanoparticles with applicability in the food and drug industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Alani RG, El Maghraby MMG, Krauel-Goellner K, Graf A (2009) In: Fanum M (ed) Microemulsions. Properties and applications. CRC Press, Boca Raton, pp 247–312

    Google Scholar 

  2. Alison A, Jones OG, McClements DJ (2011) Structured biopolymer-based delivery systems for encapsulation, protection, and release of lipophilic compounds. Food Hydrocoll 25:1865–1880

    Article  CAS  Google Scholar 

  3. Amidon GL, Lennernäs H, Shah VP, Crison JR (1995) A theoretical basis for a biopharmaceutic drug classification: the correlation in vitro drug product dissolution and in vivo bioavailability. Pharm Res 12:413–420

    Article  CAS  Google Scholar 

  4. Appelqvist IAM, Golding M, Vreeker R, Zuidam NJ (2007) In: Lakkis JM (ed) Encapsulation and controlled release technologies in food systems. Blackwell Publishing, Iowa, pp 41–81

    Chapter  Google Scholar 

  5. Astray G, Gonzales-Barreiro C, Mejuto JC, Rial-Otero R, Simal-Gandara J (2009) A review on use of cyclodextrins in food. Food Hidrocoll 23:1631–1640

    Article  CAS  Google Scholar 

  6. Augustin MA, Bhail S, Cheng LJ, Shen Z, Øiseth S, Sanguansri L (2014) Use of whole buttermilk for microencapsulation of omega-3 oils. J Funct Foods. doi:10.1016/j.jff.2014.02.014

    Google Scholar 

  7. Barros Fernandes V, Borgesa R, Botrela AA (2014) Gum arabic/starch/maltodextrin/inulin as wall materials on the microencapsulation of rosemary essential oil. Carbohydr Polym 101:524–532

    Article  CAS  Google Scholar 

  8. Beirão-da-Costa S, Duarte C, Bourbon AI, Pinheiro AC, Januário MIN, Vicente AA, Beirão-da-Costa ML, Delgadillo I (2013) Inulin potential for encapsulation and controlled delivery of Oregano essential oil. Food Hydrocolloids 33:199–206

    Article  CAS  Google Scholar 

  9. Betoret E, Betoret N, Vidal D, Fito P (2011) Functional foods development: trends and technologies. Trends Food Sci Technol 22:489–508

    Article  CAS  Google Scholar 

  10. Bigliardi B, Galati F (2013) Innovation trends in the food industry: the case of functional foods. Trends Food Sci Technol 31:118–129

    Article  CAS  Google Scholar 

  11. Brime B, Moreno MA, Frutos G, Ballesteros MP, Frutos P (2002) Amphotericin B in oil-water lecithin-based microemulsions: formulation and toxicity evaluation. J Pharm Sci 91:1178–1185

    Article  CAS  Google Scholar 

  12. Burgain J, Gaiani C, Linder M, Scher J (2011) Encapsulation of probiotic living cells: from laboratory scale to industrial applications. J Food Eng 104:467–483

    Article  CAS  Google Scholar 

  13. Canselier JR, Delmas H, Wilhelm AM, Abismail A (2002) Ultrasound emulsification-an overview. J Dispers Sci Technol 23:333–349

    Article  CAS  Google Scholar 

  14. Carvalho AGS, Silva VM, Hubinger MD (2014) Microencapsulation by spray drying of emulsified green coffee oil with two-layered membranes. Food Res Int 61:236–245

    Article  CAS  Google Scholar 

  15. Cerqueira MA, Pinheiro AC, Silva HD, Ramos PE, Azevedo MA, Flores-López ML, Rivera MC, Bourbon AI, Ramos OL, Vicente AA (2014) Design of bio-nanosystems for oral delivery of functional compounds. Food Eng Rev 6:1–19

    Article  CAS  Google Scholar 

  16. Chen Q, McGillivray D, Wen J, Zhong F, Quek SY (2013) Co-encapsulation of fish oil with phytosterol esters and limonene by milk proteins. J Food Eng 117:505–512

    Article  CAS  Google Scholar 

  17. Cocero MJ, Martín A, Mattea F, Varona S (2009) Encapsulation and co-precipitation processes with supercritical fluids: fundamentals and applications. J Supercrit Fluids 47:546–555

    Article  CAS  Google Scholar 

  18. Colas JC, Shi W, Rao VSNM, Omri A, Mozafari MR, Singh H (2007) Microscopical investigations of nisin-loaded nanoliposomes prepared by Mozafari method and their bacterial targeting. Micron 38:841–847

    Article  CAS  Google Scholar 

  19. Coles D, Frewer LJ (2013) Nanotechnology applied to European food production—a review of ethical and regulatory issues. Trends Food Sci Technol 34:32–43

    Article  CAS  Google Scholar 

  20. Constantinides PP, Tustian A, Kessler DR (2004) Tocol emulsions for drug solubilisation and parenteral delivery. Adv Drug Deliv Rev 56:1243–1255

    Article  CAS  Google Scholar 

  21. De Conto LC, Grosso CRF, Gonçalves LAG (2013) Chemometry as applied to the production of omega-3 microcapsules by complex coacervation with soy protein isolate and gum Arabic. LWT-Food Sci Technol 53:218–224

    Article  CAS  Google Scholar 

  22. Craig MQD, Patel JM, Ashford M (2000) In: Niellound F, Marti-Mestres G (eds) Pharmaceutical emulsions and suspensions. Marcel Dekker Inc, New York, pp 323–360

    Chapter  Google Scholar 

  23. Cushena M, Kerry J, Morris M, Cruz-Romero M, Cummins E (2012) Nanotechnologies in the food industry—recent developments, risks and regulation. Trends Food Sci Technol 24:30–46

    Article  CAS  Google Scholar 

  24. Dai J, Nagai T, Wang X, Zhang T, Menga M, Zhang Q (2004) pH-sensitive nanoparticles for improving the oral bioavailability of cyclosporine A. Int J Pharm 280:229–240

    Article  CAS  Google Scholar 

  25. Dalgleish GD (2004) In: Friberg SE, Larsson K, Sjöblom J (eds) Food emulsions, 4th edn. Marcel Dekker Inc. http://www.dekker.com

  26. Danielsson I, Lindman B (1981) The definition of a microemulsion. Colloids Surf 3:391–392

    Article  CAS  Google Scholar 

  27. Deladino L, Navarro Anbinder PS, Navarro AS, Martino MN (2008) Encapsulation of natural antioxidants extracted from Ilex paraguariensis. Carbohydr Polym 71:126–134

    Article  CAS  Google Scholar 

  28. De Paz E, Martín A, Estrella A, Rodríguez-Rojo S, Matias AA, Duarte CMM, Cocero MJ (2012) Formulation of β-carotene by precipitation from pressurized ethyl acetate-on-water emulsions for application as natural colorant. Food Hydrocoll 26:17–27

    Article  CAS  Google Scholar 

  29. De Voss P, Faas MM, Spasojevic M, Sikkema J (2010) Encapsulation for preservation of functionality and targeted delivery of bioactive food components. Int Dairy J 20:292–302

    Article  CAS  Google Scholar 

  30. Dima C, Cotârlet M, Alexe P, Dima S (2014) Microencapsulation of essential oil of pimento [Pimenta dioica (L) Merr.] by chitosan/k-carrageenan complex coacervation method. Innov Food Sci Emerg Technol 22:203–211

    Article  CAS  Google Scholar 

  31. Dima C, Cotarlet M, Tiberius B, Bahrim G, Alexe P, Dima S (2014) Encapsulation of coriander essential oil in beta-cyclodextrin: antioxidant and antimicrobial properties evaluation. Roum Biol Lett 19(2):9128–9140

    Google Scholar 

  32. Djordjevic D, Cercaci L, Alamed J, McClements DJ, Decker EA (2007) Chemical and physical stability of citral and limonene in sodium dodecyl sulfate-chitosan and gum arabic-stabilized oil-in-water emulsions. J Agric Food Chem 55:3585–3591

    Article  CAS  Google Scholar 

  33. Dong Y, Ng WK, Shen S, Kim S, Tan RBH (2012) Solid lipid nanoparticles: continuous and potential large-scale nanoprecipitation production in static mixers. Colloids Surf B 94:68–72

    Article  CAS  Google Scholar 

  34. Du L, Wu L, Jin Y, Jia J, Li M, Wang Y (2014) Self-assembled drug delivery systems. Part 7: hepatocyte-targeted nanoassemblies of an adefovir lipid derivative with cytochrome P450-triggered drug release. Int J Pharm 472(2014):1–9

    Article  CAS  Google Scholar 

  35. Elsayed MMA, Abdallah YO, Naggar FV, Khalafallah MN (2007) Lipid vesicles for skin delivery of drugs: reviewing three decades of research. Int J Pharm 332:1–16

    Article  CAS  Google Scholar 

  36. Eskandari S, Varshosaz J, Minaiyan M, Tabbakhian M (2011) Brain delivery of valproic acid via intranasal administration of nanostructured lipid carriers: in vivo pharmacodynamic studies using rat electroshock model. Int J Nanomedicine 6:363–371

    CAS  Google Scholar 

  37. Estevinho BN, Rocha F, Santos L, Alves A (2013) Microencapsulation with chitosan by spray drying for industry applications—a review. Trends Food Sci Technol 31:138–155

    Article  CAS  Google Scholar 

  38. Fanun M (2012) Microemulsions as delivery systems. Curr Opin Colloid Interface Sci 17:306–313

    Article  CAS  Google Scholar 

  39. Fathia M, Mozafari MR, Mohebbi M (2012) Nanoencapsulation of food ingredients using lipid based delivery systems. Trends Food Sci Technol 23:13–27

    Article  CAS  Google Scholar 

  40. Fisher S, Ellen J, Wachtel JE, Aserin A, Garti N (2013) Solubilization of simvastatin and phytosterols in a dilutable microemulsion system. Colloids Surf B 107:35–42

    Article  CAS  Google Scholar 

  41. Flanagan J, Harjinder S (2006) Microemulsions: a potential delivery system for bioactives in food. Crit Rev Food Sci 46:221–237

    Article  CAS  Google Scholar 

  42. Frisch N, Igonin A, Benameur H (2007) Développement de systèmes pharmaceutiques automicroémulsionants. In: Vandamme T, Poncelet D, Subra-Paternault (eds) Microencapsulation. Des sciences aux technologies, Lavoisier, Paris, pp 243–266

    Google Scholar 

  43. Garti N, Aserim A (2006) In: Benita S (ed) Microemulsion. Methods and applications. CRC Press, New York, pp 345–428

    Google Scholar 

  44. Garti N, Yaghmur A, Leser ME, Clement V, Watzke HJ (2001) Improved oil solubilization in oil/water food grade microemulsions in the presence of polyols and ethanol. J Agric Food Chem 49:255–2562

    Article  CAS  Google Scholar 

  45. Garrigue JS, Lambert G, Benita S (2006) In: Benita S (ed) Methods and industrial application, 2nd edn. CRC Press, New York, pp 429–480

    Google Scholar 

  46. Gonnet M, Lethuaut L, Boury F (2010) New trends in encapsulation of liposoluble vitamins. J Control Release 146:276–290

    Article  CAS  Google Scholar 

  47. Guo C, Yanga C, Li Q, Tan Q, Xi Y, Liud W (2012) Development of a Quercetin-loaded nanostructured lipid carrier formulation for topical delivery. Int J Pharm 430(1–2):292–298

    CAS  Google Scholar 

  48. Gutiérrez FJ, Albillos SM, Casas-Sanz E, Cruz Z, García-Estrada C, García-Guerra A, García-Reverter J, García-Suárez M, Gatón P, González-Ferrero C, Olabarrieta I, Olasagasti M, Rainieri S, Rivera-Patiño D, Rojo R, Romo-Hualde A, Sáiz-Abajo MJ, Mussons ML (2013) Methods for the nanoencapsulation of β-carotene in the food sector. Trends Food Sci Technol 32:73–83

    Article  CAS  Google Scholar 

  49. Gökmen V, Mogol BA, Lumaga RB, Fogliano V, Kaplun Z, Shimoni E (2011) Development of functional bread containing nanoencapsulated omega-3 fatty acids. J Food Eng 105:585–591

    Article  CAS  Google Scholar 

  50. Harshna P, Solanki NS (2012) Gastro resistant drug delivery system: a review. Int J Drug Dev Res 4(4):1–8

    Google Scholar 

  51. Hasana M, Belhaj N, Benachour H, Barberi-Heyob M, Kahn CJF, Jabbari E, Linder M, Arab-Tehrany E (2014) Liposome encapsulation of curcumin: physico-chemical characterizations and effects on MCF7 cancer cell proliferation. Int J Pharm 461:519–528

    Article  CAS  Google Scholar 

  52. Helgason T, Awad T, Kristbergsson K, Decker EA, McClements DJ, Weiss J (2009) Impact of surfactant properties on oxidative stability of b-carotene encapsulated within solid lipid nanoparticles. J Agr Food Chem 57:8033–8040

    Article  CAS  Google Scholar 

  53. Hoffman SA (2008) The origin and evoluation of “controlled” drug delivery systems. J Control Release 132(3):153–163

    Article  CAS  Google Scholar 

  54. Hosseini SM, Hosseini H, Mohammadifar MA, Mortazavian AM, Mohammadi A, Khosravi-Darani K, Shojaee-Aliabadi S, Dehghan S, Khaksar R (2013) Incorporation of essential oil in alginate microparticles by multipleemulsion/ionic gelation process. Int J Biol Macromol 62:582–588

    Article  CAS  Google Scholar 

  55. Hou Z, Zhang M, Liu B, Yan Q, Yuan F, Xu D, Gao Y (2012) Effect of chitosan molecular weight on the stability and rheological properties of β-carotene emulsions stabilized by soybean soluble polysaccharides. Food Hydrocoll 26:205–211

    Article  CAS  Google Scholar 

  56. Jimenez M, Garcia HS, Beristain CI (2008) Sensory evaluation of dairy products supplemented with microencapsulated conjugated linoleic acid (CLA). LWT 41:1047–1052

    Article  CAS  Google Scholar 

  57. Jun-Xia X, Hai Y, Yang-Jian Y (2011) Microencapsulation of sweet orange oil by complex coacervation with soybean protein isolate/gum Arabic. Food Chem 125:1267–1272

    Article  CAS  Google Scholar 

  58. Kalaitzaki A, Emo M, Stebe MJ, Xenakis A, Papadimitriu V (2013) Biocompatible nanodispersions as delivery systems of food additives: a structural study. Food Res Int 54:1448–1454

    Article  CAS  Google Scholar 

  59. Kalani M, Yunus R (2011) Application of supercritical antisolvent method in drug encapsulation: a review. Int J Nanomed 6:1429–1442

    Article  CAS  Google Scholar 

  60. Kha TC, Nguyen MH, Roach PD, Stathopoulos CE (2014) Microencapsulation of gac oil: optimisation of spray drying conditions using response surface methodology. Powder Technol. doi:10.1016/j.powtec.2014.05.053

    Google Scholar 

  61. Khayata N, Abdelwahed W, Chehna MF, Charcosset C, Fessi H (2012) Preparation of vitamin E loaded nanocapsules by the nanoprecipitation method: from laboratory scale to large scale using a membrane contactor. Int J Pharm 423:419–427

    Article  CAS  Google Scholar 

  62. Kim ST, Jang DJ, Kim JH, Park JY, Lim JS, Lee SY, Lee KM, Lim SJ, Kim CK (2009) Topical administration of cyclosporin A in a solid lipid nanoparticle formulation. Pharmazie 64:510–514

    CAS  Google Scholar 

  63. Kissel T, Maretschek S, Packhäuse C, Schnieders J, Siedel N (2006) Microencapsulation techniques for parenteral depot systems and their application in the pharmaceutical industry. In: Benita Simon (ed) Microencapsulation: methods and industrial application, 2nd edn. CRC Press, New York, pp 99–122

    Google Scholar 

  64. Kogan A, Garti N (2006) Microemulsions as transdermal drug delivery vehicles. Adv Colloid Interface Sci 123–126:369–385

    Article  CAS  Google Scholar 

  65. Kohli K, Chopra S, Dhar D, Arora S, Khar RK (2010) Self-emulsifying drug delivery systems: an approach to enhance oral bioavailability. Drug Discov Today 15(21/22):958–965

    Article  CAS  Google Scholar 

  66. Kosaraju SL, D’ath L, Lawrence A (2006) Preparation and characterisation of chitosan microspheres for antioxidant delivery. Carbohydr Polym 64:163–167

    Article  CAS  Google Scholar 

  67. Kosaraju SL, Labbett D, Emin M, Konczak I, Lundin L (2008) Delivering polyphenols for healthy ageing. Nutr Diet 65:48–52

    Article  Google Scholar 

  68. Kumar MK, Anil B (2012) Biopharmaceutics drug disposition classification system: an extension of biopharmaceutics classification system. Int Res J Pharm 3:5–10

    Google Scholar 

  69. Kumar PG, Rajeshwarrao P (2011) Nonionic surfactant vesicular systems for effective drug delivery—an overview. Acta Pharm Sin B 1(4):208–219

    Article  CAS  Google Scholar 

  70. Lacatusu I, Mitrea E, Badea N, Stan R, Oprea O, Meghea A (2013) Lipid nanoparticles based on omega-3 fatty acids as effective carriers for lutein delivery vitro characterization studies. J Funct Foods 5:1260–1269

    Article  CAS  Google Scholar 

  71. Laridi R, Kheadr EE, Benech RO, Vuillemard JC, Lacroix C, Fliss I (2003) Liposome encapsulated nisin Z: optimization, stability and release during milk fermentation. Int Dairy J 13:325–336

    Article  CAS  Google Scholar 

  72. Laohasongkrama K, Mahamaktudsanee T, Chaiwanichsiri S (2011) Microencapsulation of Macadamia oil by spray drying. Procedia Food Sci 1:1660–1665

    Article  CAS  Google Scholar 

  73. Lawrence MJ, Rees DG (2012) Microemulsion-based media as novel drug delivery systems. Adv Drug Deliv Rev 64(2012):175–193

    Article  Google Scholar 

  74. Lee J-S, Song Y-B, Lee JY, Kim MY, Jun SJ, Lee HG (2009) Optimization and oxidative stability of the microencapsulated conjugated linoleic acid. Int J Biol Macromol 45:348–351

    Article  CAS  Google Scholar 

  75. Lim ASL, Griffin C, Roos YR (2014) Stability and loss kinetics of lutein and β-carotene encapsulated in freeze-dried emulsions with layered interface and trehalose as glass former. Food Res Int 62:403–409

    Article  CAS  Google Scholar 

  76. Lin CC, Lin H-Y, Chi M-H, Shen C-M, Chen H-W, Yang W-J, Lee M-H (2014) Preparation of curcumin microemulsions with food-grade soybean oil/lecithin and their cytotoxicity on the HepG2 cell line. Food Chem 154:282–290

    Article  CAS  Google Scholar 

  77. Livney DY (2010) Milk proteins as vehicles for bioactives. Curr Opin Colloid Interface Sci 15:73–83

    Article  CAS  Google Scholar 

  78. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 23:3–25

    Article  CAS  Google Scholar 

  79. Liu GY, Wang JM, Xia Q (2012) Application of nanostructured lipid carrier in food for the improved bioavailability. Eur Food Res Technol 234(3):391–398

    Article  CAS  Google Scholar 

  80. Loftsson T, Brewster ME (2011) Pharmaceutical applications of cyclodextrins: effects on drug permeation through biological membranes. J Pharm Pharmacol 63:1119–1135

    Article  CAS  Google Scholar 

  81. Martins MI, Barreiro FM, Coelho M, Alírio E, Rodrigues AE (2014) Microencapsulation of essential oils with biodegradable polymeric carriers for cosmetic applications. Chem Eng J 254:191–200

    Article  CAS  Google Scholar 

  82. Morishita M, Peppas AN (2012) Advances in oral drug delivery: improved bioavailability of poorly absorbed drugs by tissue and cellular optimization. Adv Drug Deliv Rev 64(6):479

    Article  CAS  Google Scholar 

  83. McClements DJ, Decker EA, Park Y (2009) Controlling lipid bioavailability through physicochemical and structural approaches. Crit Rev Food Sci Nutr 49(1):48–67

    Article  Google Scholar 

  84. McClements DJ, Li Yan (2010) Structured emulsion-based delivery systems: controlling the digestion and release of lipophilic food components. Adv Colloid Interface 159:213–228

    Article  CAS  Google Scholar 

  85. McClements DJ (2012) Nanoemulsions versus microemulsions: terminology, differences, and similarities. Soft Matter 8(6):1719–1729

    Article  CAS  Google Scholar 

  86. Moreno MA, Ballesteros MP (2003) Lecitin-basedoil-in-water microemulsions for parenteral use: pseudo ternary phase diagrams, characterization and toxicity studies. J Pharm Sci 92:1428–1437

    Article  CAS  Google Scholar 

  87. Mozafari MR, Johnson C, Hatziantoniou S, Demetzos C (2008) Nanoliposomes and their applications in food nanotechnology. J Liposome Res 18(4):309–327

    Article  CAS  Google Scholar 

  88. Mangolim CS, Moriwaki C, Nogueira AC, Sato F, Baesso ML, Neto AM, Matioli G (2014) Curcumin–b-cyclodextrin inclusion complex: stability, solubility, characterisation by FT-IR, FT-Raman, X-ray diffraction and photoacoustic spectroscopy, and food application. Food Chem 153:361–370

    Article  CAS  Google Scholar 

  89. Mattea F, Martín A, Cocero MJ (2009) Carotenoid processing with supercritical fluids. J Food Eng 93:255–265

    Article  CAS  Google Scholar 

  90. Mastiholimath VS, Dandagi PM, Jain SS, Gadad AP, Kulkarni AR (2007) Time and pH dependent colon specific, pulsatile delivery of theophylline for nocturnal asthma. Int J Pharm 328:49–56

    Article  CAS  Google Scholar 

  91. Mehnert W, Mäder K (2012) Solid lipid nanoparticles production, characterization and applications. Adv Drug Deliv Rev 64:83–101

    Article  Google Scholar 

  92. Memişoğlu-Bilensoy E, Hincal A, Bochot A, Trichard L, Duchêne (2006) Amphiphilic cyclodextrins and microencapsulation. In: Benita S (ed) Microencapsulation: methods and industrial application, 2nd edn. CRC Press, New York, pp 269–296

    Google Scholar 

  93. Mezzomo N, de Paz E, Maraschin M, Martın A, Cocero MJ, Ferreira SRS (2012) Supercritical anti-solvent precipitation of carotenoid fraction from pink shrimp residue: effect of operational conditions on encapsulation efficiency. J Supercrit Fluids 66:342–349

    Article  CAS  Google Scholar 

  94. Miguel F, Martın A, Mattea F, Cocero MJ (2008) Precipitation of lutein and co-precipitation of lutein and poly-lactic acid with the supercritical anti-solvent process. Chem Eng Process 47:1594–1602

    Article  CAS  Google Scholar 

  95. Mohanraj VJ, Chen Y (2006) Nanoparticles: a review. Trop J Pharm Res 5:561–573

    Google Scholar 

  96. Monduzzi M, Lampi S, Murgia S, Sali A (2014) From self-assembly fundamental knowledge to nanomedicine developments. Adv Colloid Interface Sci 205:48–67

    Article  CAS  Google Scholar 

  97. Norno AO, Osborne DW, Chow DSL (2008) Cremophor-free intravenous microemulsions for paclitaxel I: formulation, cytotoxicity and hemolysis. Int J Pharm 349:108–116

    Article  CAS  Google Scholar 

  98. Noronha CM, Granada AF, Carvalho SM, Lino RC, Maciel MVOB, Barreto PLM (2013) Optimization of α-tocopherol loaded nanocapsules by the nanoprecipitation method. Ind Crops Prod 50:896–903

    Article  CAS  Google Scholar 

  99. O’Driscoll CM, Griffin BT (2008) Biopharmaceutical challenges associated with drugs with low aqueous solubility—the potential impact of lipid-based formulations. Adv Drug Deliv Rev 60:617–624

    Article  CAS  Google Scholar 

  100. Ogawa S, Decker EA, Mcclements DJ (2003) Production and characterization of O/W emulsions containing cationic droplets stabilized by lecithin-chitosan membranes. J Agric Food Chem 51:2806–2812

    Article  CAS  Google Scholar 

  101. Palavra AMF, Coehlo JP, Barrosoc J, Rauterc AP, Falereir JMNA, Mainar A, Urieta JS, Nobre BP, Gouveia L, Mendes RL, Cabral JMS, Novais JM (2011) Supercritical carbon dioxide extraction of bioactive compounds from microalgae and volatile oils from aromatic plants. J Supercrit Fluids 60:21

    Article  CAS  Google Scholar 

  102. Panyam J, Dali MM, Sahoo SK, Ma W, Chakravarthi SS, Amidon GL, Levy RJ, Labhasetwar V (2003) Polymer degradation and in vitro release of a model protein from poly(D,L-lactide-co-glycolide) nano- and microparticles. J Control Release 92:173–187

    Article  CAS  Google Scholar 

  103. Pardakhty A, Varshosaz J, Rouholamini A (2007) In vitro study of polyoxyethylene alkyl ether niosomes for delivery of insulin. Int J Pharm 328:130–141

    Article  CAS  Google Scholar 

  104. Patrick SP, Cansell M, Had A, Atgié C (2012) Vitamin A enrichment: caution with encapsulation strategies used for food applications. Food Res Int 46:469–479

    Article  CAS  Google Scholar 

  105. Pardeike J, Weber S, Haber T, Wagner J, Zarfl HP, Plankb H (2011) Development of an itraconazole-loaded nanostructured lipid carrier (NLC) formulation for pulmonary application. Int J Pharm 419(1–2):329–338

    Article  CAS  Google Scholar 

  106. Pey CM, Maestro A, Soléa I, González C, Solans C, Gutiérrez JM (2006) Optimization of nano-emulsions prepared by low-energy emulsification methods at constant temperature using a factorial design study. Colloids Surf A Physicochem Eng Asp 288:144–150

    Article  CAS  Google Scholar 

  107. Pinho E, Grootveld M, Soares G, Henriquesa M (2014) Cyclodextrins as encapsulation agents for plant bioactive compounds. Carbohydr Polym 101:121–135

    Article  CAS  Google Scholar 

  108. Piorkowski DT, McClements DJ (2014) Beverage emulsions: recent developments in formulation, production, and applications. Food Hydrocoll 42:5–41

    Article  CAS  Google Scholar 

  109. Poncelet D, Dreffier C (2007) In: Vandamme T, Poncelet D, Subra-Paternault (eds) Microencapsulation. Des sciences aux technologies. Lavoisier, Paris, pp 23–34

  110. Pouton WC, Porter JHC (2008) Formulation of lipid-based delivery systems for oral administration: materials, methods and strategies. Adv Drug Deliv Rev 60:625–637

    Article  CAS  Google Scholar 

  111. Quintanilla-Carvajal M, Camacho-Dıaz B, Meraz-Torres L, Chanona-Perez J, Alamilla-Beltran L, Jimenez-Aparicio A (2010) Nanoencapsulation: a new trend in food engineering processing. Food Eng Rev 2:39–50

    Article  Google Scholar 

  112. Quintanilla-Carvajal M, Hernández-Sánchez H, Alamilla-Beltrán L, Zepeda-Vallejo G, Jaramillo-Flores ME, Perea-Flores M-J, Jimenez-Aparicio A, Gutiérrez-López GF (2014) Effects of microfluidisation process on the amounts and distribution of encapsulated and non-encapsulated α-tocopherol microcapsules obtained by spray drying. Food Res Int. doi:10.1016/j.foodres.2014.05.025

    Google Scholar 

  113. Qv XY, Zeng Z-P, Jiang J-G (2011) Preparation of lutein microencapsulation by complex coacervation method and its physicochemical properties and stability. Food Hydrocoll 25:1596–1603

    Article  CAS  Google Scholar 

  114. Rao J, McClements D (2012) Food-grade microemulsions and nanoemulsions: role of oil phase composition on formation and stability. Food Hydrocoll 29:326–334

    Article  CAS  Google Scholar 

  115. Ribeiro JC, Ribeiro WLC, Camurc Vasconcelos ALF, Macedo ITF, Santos JML, Paula HCB, Araujo Filho JV, Magalhaes RD, Bevilaqua CML (2014) Efficacy of free and nanoencapsulated Eucalyptus citriodora essential oils on sheep gastrointestinal nematodes and toxicity for mice. Vet Parasitol. doi:10.1016/j.vetpar.2014.05.026

    Google Scholar 

  116. Roccia P, Marcela L, Martinez LM, Llabot MJ, Ribotta DP (2014) Influence of spray-drying operating conditions on sunflower oil powder qualities. Powder Technol. doi:10.1016/j.powtec.2014.01.044

    Google Scholar 

  117. Rocha GA, Fávaro-Trindade CS, Grosso CRF (2012) Microencapsulation of lycopene by spray drying: characterization, stability and application of microcapsules. Food Bioprod Process 90:37–42

    Article  CAS  Google Scholar 

  118. Rodea-González DA, Cruz-Olivares J, Román-Guerrero A, Rodríguez-Huezo ME, Vernon-Carter EJ, Pérez-Alonso C (2012) Spray-dried encapsulation of chia essential oil (Salvia hispanica L.) in whey protein concentrate-polysaccharide matrices. J Food Eng 111:102–109

    Article  CAS  Google Scholar 

  119. Rubinstein A (2007) In: Touitou E, Barry WB (eds) Enhancement in drug delivery. CRC Press, New York, pp 3–36

    Google Scholar 

  120. Sagalowicz L, Leser ME (2010) Delivery systems for liquid food products. Curr Opin Colloid Interface Sci 15:61–72

    Article  CAS  Google Scholar 

  121. Salager J-L (2000) Formulation concepts for the emulsion maker. In: Niellound F, Marti-Mestres G (eds) Pharmaceutical emulsions and suspensions. Marcel Dekker Inc, New York, pp 20–70

    Google Scholar 

  122. Salminen H, Herrmann K, Weiss J (2013) Oil-in-water emulsions as a delivery system for n-3 fatty acids in meat products. Meat Sci 93:659–667

    Article  CAS  Google Scholar 

  123. Sanguansri P, Augustin MA (2006) Nanoscale materials development-a food industry perspective. Trends Food Sci Technol 17:547–556

    Article  CAS  Google Scholar 

  124. Santos DT, Martín A, Meireles MA, Cocero MJ (2012) Production of stabilized sub-micrometric particles of carotenoids using supercritical fluid extraction of emulsions. J Supercrit Fluids 61:167–174

    Article  CAS  Google Scholar 

  125. Sarbari A, Sanjeeb KS (2011) PLGA nanoparticles containing various anticancer agents and tumour delivery by EPR effect. Adv Drug Deliv Rev 63:170–183

    Article  CAS  Google Scholar 

  126. Shekunov BY, Chattopadhyay P, Seitzinger J, Huff R (2006) Nanoparticles of poorly water-soluble drugs prepared by supercritical fluid extraction of emulsions. Pharm Res 23:196–204

    Article  CAS  Google Scholar 

  127. Severino P, Santana MHA, Souto EB (2012) Optimizing SLN and NLC by 22 full factorial design: effect of homogenization technique. Mater Sci Eng, C 32(6):1375–1379

    Article  CAS  Google Scholar 

  128. Shah KA, Date AA, Joshi MD, Patravale VB (2007) Solid lipid nanoparticles (SLN) of tretinoin: potential in topical delivery. Int J Pharm 345(1–2):163–171

    Article  CAS  Google Scholar 

  129. Shaw LA, McClements DJ, Decker EA (2007) Spray-dried multilayered emulsions as a delivery method for omega 3 fatty acids into food systems. J Agric Food Chem 55:3112–3119

    Article  CAS  Google Scholar 

  130. Shchukina EM, Shchukin EM, Shchukin EM (2012) Layer-by-layer coated emulsion microparticles as storage and delivery tool. Curr Opin Colloid Interface Sci 17(5):281–289

    Article  CAS  Google Scholar 

  131. Sheth P, Sandhu H, Singhal D, Malik W, Shah N, Kislalioglu MS (2012) Nanoparticles in the pharmaceutical industry and the use of supercritical fluid technologies for nanoparticle production. Curr Drug Deliv 9(3):269–284

    Article  CAS  Google Scholar 

  132. Sim WLS, Han MY, Huang D (2009) Quantification of antioxidant capacity in a microemulsion system: synergistic effects of chlorogenic acid with α-tocopherol. J Agr Food Chem 57(9):3409–3414

    Article  CAS  Google Scholar 

  133. Sinko JP (2006) Physical pharmacy and pharmaceutical sciences. Lippincott & Wilkins, Baltimore

    Google Scholar 

  134. Solé I, Maestro A, Pey CM, Gonzalez C, Solans C, Gutierrez JM (2006) Nano-emulsions preparation by low energy methods in an ionic surfactant system. Colloids Surf A Physicochem Eng Asp 288:138–143

    Article  CAS  Google Scholar 

  135. Song G, Li X, Du J, Wang J (2014) Preparative separation of conjugated linoleic acids (CLAs) from fermented Camellia oleifera Abel cake by b-cyclodextrin (b-CD) encapsulation using pH-zone-refining countercurrent chromatography. Food Chem 146:437–442

    Article  CAS  Google Scholar 

  136. Spada JC, Norena CPZ, Marczak LDF, Tessaro IC (2012) Study on the stability of β-carotene microencapsulated with pinhăo (Araucaria angustifolia seeds) starch. Carbohydr Polym 89:1166–1173

    Article  CAS  Google Scholar 

  137. Spernath A, Aserim A (2006) Microemulsions as carriers for drugs and nutraceuticals. Adv Colloid Interf 128–130:47–64

    Article  CAS  Google Scholar 

  138. Spernath A, Yaghmur A, Aserin A, Hoffman RE, Garti N (2002) Food-grade microemulsions based on nonionic emulsifiers: media to enhance lycopene solubilization. J Agric Food Chem 50:6917–6922

    Article  CAS  Google Scholar 

  139. Stražišar M, Andrenšek S, Šmidovnik A (2008) Effect of beta-cyclodextrin on antioxidant activity of coumaric acids. Food Chem 110(3):636–642

    Article  CAS  Google Scholar 

  140. Subra-Paternault P, Vega-Gonzales A, Roy C (2008) Encapsulation assistée par fluids supercritiques. In: Vandamme T, Poncelet D, Subra-Paternault P (eds) Microencapsulation: des sciences aux technologies. Lavoisier, Paris, pp 117–130

    Google Scholar 

  141. Sutaphanit P, Chitprasert P (2014) Optimisation of microencapsulation of holy basil essential oil in gelatin by response surface methodology. Food Chem 150:313–320

    Article  CAS  Google Scholar 

  142. Tamjidi F, Nasirpour A, Shahedi M (2012) Physicochemical and sensory properties of yogurt enriched with microencapsulated fish oil. Food Sci Technol Int 18(4):381–390

    Article  CAS  Google Scholar 

  143. Tamjidi F, Shahedi M, Varshosaz J, Nasirpour A (2013) Nanostructured lipid carriers (NLC): a potential delivery system for bioactive food molecules. Innov Food Sci Emerg Technol 19:29–43

    Article  CAS  Google Scholar 

  144. Tao F, Hill LE, Peng Y, Gomes CL (2014) Synthesis and characterization of β-cyclodextrin inclusion complexes of thymol and thyme oil for antimicrobial delivery applications. LWT. doi:10.1016/j.lwt.2014.05.037

    Google Scholar 

  145. Teng Z, Luo Y, Wang Q (2013) Carboxymethyl chitosan–soy protein complex nanoparticles for the encapsulation and controlled release of vitamin D3. Food Chem 141:524–532

    Article  CAS  Google Scholar 

  146. Tije LA, Verweij J, Loos WJ, Spareboom A (2003) Pharmacological effects of formulation vehicles implication for cancer chemotherapy. Clin Pharmacokinet 42:665–685

    Article  Google Scholar 

  147. Thies C (2004) In: Vilstrup P (ed) Microencapsulation of food ingredients. UK, Leatherhead International Limited, pp 1–30

    Google Scholar 

  148. Tsui JH, Lee W, Pun SH, Kim J, Kim DH (2013) Microfluidics-assisted in vitro drug screening and carrier production. Adv Drug Deliv Rev 65:1575–1588

    Article  CAS  Google Scholar 

  149. Turgeon SL, Schmitt C, Sanchez C (2007) Protein-polysaccharide complexes and coacervates. Curr Opin Colloid Interface Sci 12:166–178

    Article  CAS  Google Scholar 

  150. Umesha SS, Sai Manohar R, Indiramma AR, Akshitha S, Akhilender Naidu K (2014) Enrichment of biscuits with microencapsulated omega-3 fatty acid (Alpha-linolenic acid) rich Garden cress (Lepidium sativum) seed oil: physical, sensory and storage quality characteristics of biscuits. LWT. doi:10.1016/j.lwt.2014.02.018

    Google Scholar 

  151. Wang B, Adhikari B, Barrow CJ (2014) Optimisation of the microencapsulation of tuna oil in gelatin–sodium hexametaphosphate using complex coacervation. Food Chem 158:358–365

    Article  CAS  Google Scholar 

  152. Wang JT, Wang J, Han JJ (2011) Fabrication of advanced particles and particle-based materials assisted by droplet-based microfluidics. Small 7:1728–1754

    Article  CAS  Google Scholar 

  153. Werle M, Bernkop-Schürch A (2007) In: Touitou Elka, Barry W Brian (eds) Enhancement in drug delivery. New York

  154. Wulff-Pérez M, Torcello-Gomez A, Galvez-Ruız MJ, Martın-Rodrıguez A (2009) Stability of emulsions for parenteral feeding: preparation and characterization of o/w nanoemulsions with natural oils and Pluronic f68 as surfactant. Food Hydrocoll 23:1096–1102

    Article  CAS  Google Scholar 

  155. Xiao JX, Yu HY, Yang J (2010) Microencapsulation of sweet orange oil by complex coacervation with soybean protein isolate/gum Arabic. Food Chem 125(4):1267–1272

    Google Scholar 

  156. Xu J, Zhao W, Ning Y, Bashari M, Wu F, Chen H, Yang N, Jin Z, Baocai X, Zhang B, Xu X (2013) Improved stability and controlled release of ω3/ω6 polyunsaturated fatty acids by spring dextrin encapsulation. Carbohydr Polym 92:1633–1640

    Article  CAS  Google Scholar 

  157. Yoo HS, Lee KH, Oh JE, Park TG (2000) In vitro and in vivo anti-tumor activities of nanoparticles based on doxorubicin-PLGA conjugates. J Control Release 68:419–431

    Article  CAS  Google Scholar 

  158. Yuan Y, Gao Y, Zhao J, Mao L (2008) Characterization and stability evaluation of betacarotene nanoemulsions prepared by high pressure homogenization under various emulsifying conditions. Food Res Int 41:61–68

    Article  CAS  Google Scholar 

  159. Zang J, Michniak-Kohn B (2011) Investigation of microemulsion microstructures and their relationship to transdermal permeation of model drugs: ketoprofen, lidocaine, and caffeine. Int J Pharm 421:34–44

    Article  CAS  Google Scholar 

  160. Zara GP, Cavalli R, Fundarò A, Bargoni A, Caputo O, Gasco MR (1999) Pharmacokinetics of doxorubicin incorporated in solid lipid nanospheres (SLN). Pharm Res 44:281–286

    Article  Google Scholar 

  161. Ziani K, Fang Y, McClements DJ (2012) Encapsulation of functional lipophilic components in surfactant-based colloidal delivery systems: vitamin E. vitamin D, and lemon oil. Food Chem 134:1106–1112

    Article  CAS  Google Scholar 

  162. Zhang Y, Chan HF, Leong WK (2013) Advanced materials and processing for drug delivery: the past and the future. Adv Drug Deliv Rev 65:104–120

    Article  CAS  Google Scholar 

  163. Zhao C, Cheng H, Jiang P, Yao Y, Han J (2014) Preparation of lutein-loaded particles for improving solubility and stability by polyvinylpyrrolidone (PVP) as an emulsion-stabilizer. Food Chem 156:123–128

    Article  CAS  Google Scholar 

  164. Zhao Y, Wang C, Albert HL, Ke Ren C, Gong T, Zhang Z, Zheng Y (2010) Self-nanoemulsifying drug delivery system (SNEDDS) for oral delivery of Zedoary essential oil: formulation and bioavailability studies. Int J Pharm 383(2010):170–177

    Article  CAS  Google Scholar 

  165. Zuidam NJ, Shimoni E (2010) In: Zuidam NJ, Nedović VA (eds) Encapsulation technologies for active food ingredients and food processing. Springer, New York, pp 3–30

    Chapter  Google Scholar 

Download references

Acknowledgments

Project COST FA 1001—The application of innovative fundamental food-structure-property relationships to the design of foods for health, wellness and pleasure. The work of Cristian Dima was supported by Project SOP HRD—PERFORM/159/1.5/S/138963.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriela Iordăchescu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dima, Ş., Dima, C. & Iordăchescu, G. Encapsulation of Functional Lipophilic Food and Drug Biocomponents. Food Eng Rev 7, 417–438 (2015). https://doi.org/10.1007/s12393-015-9115-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12393-015-9115-1

Keywords

Navigation