Skip to main content

Advertisement

Log in

Multimodality molecular imaging: Gaining insights into the mechanisms linking chronic stress to cardiovascular disease

  • Molecular Imaging Corner
  • Published:
Journal of Nuclear Cardiology Aims and scope

Abstract

Positron emission tomography (PET) imaging can yield unique mechanistic insights into the pathophysiology of atherosclerosis. 18F-fluorodeoxyglucose (18F-FDG), a radiolabeled glucose analog, is retained by cells in proportion to their glycolytic activity. While 18F-FDG accumulates within several cell types in the arterial wall, its retention correlates with macrophage content, providing an index of arterial inflammation (ArtI) which predicts subsequent cardiovascular disease (CVD) events. Furthermore, 18F-FDG-PET imaging allows the simultaneous assessment of metabolic activity in several tissues (e.g., brain, bone marrow) and is performed in conjunction with cross-sectional imaging that enables multi-organ structural assessments. Accordingly, 18F-FDG-PET/computed tomography (CT) imaging facilitates evaluation of disease pathways that span multiple organ systems. Within this paradigm, 18F-FDG-PET/CT imaging has been implemented to study the mechanism linking chronic stress to CVD. To evaluate this, stress-associated neural activity can be quantified (as metabolic activity of the amygdala (AmygA)), while leukopoietic activity, ArtI, and coronary plaque burden are assessed concurrently. Such simultaneous quantification of tissue structures and activities enables the evaluation of multi-organ pathways with the aid of mediation analysis. Using this approach, multi-system 18F-FDG-PET/CT imaging studies have demonstrated that chronically heightened stress-associated neurobiological activity promotes leukopoietic activity and systemic inflammation. This in turn fuels more ArtI and greater non-calcified coronary plaque burden, which result in more CVD events. Subsequent studies have revealed that common stressors, such as chronic noise exposure and income disparities, drive the front end of this pathway to increase CVD risk. Hence, multi-tissue multimodality imaging serves as a powerful tool to uncover complex disease mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Reprinted with permission.1

Figure 2
Figure 3

Reprinted with permission.19

Figure 4

Reprinted with permission.40

Figure 5

Reprinted with permission.41

Figure 6

Reprinted with permission.42

Figure 7

Reprinted with permission.48

Figure 8

Reprinted with permission.49

Figure 9

Reprinted with permission.27

Similar content being viewed by others

Abbreviations

AmygA:

Amygdalar metabolic activity

ArtI:

Arterial inflammation

BM:

Bone marrow

CT:

Computed tomography

CVD:

Cardiovascular disease

18F-FDG:

18F-fluorodeoxyglucose

MRI:

Magnetic resonance imaging

PET:

Positron emission tomography

PSS:

Perceived Stress Scale

VAT:

Visceral adipose tissue

References

  1. Joseph P, Tawakol A. Imaging atherosclerosis with positron emission tomography. Eur Heart J 2016;37:2974-80.

    PubMed  Google Scholar 

  2. Figueroa AL, Subramanian SS, Cury RC, Truong QA, Gardecki JA, Tearney GJ, et al. Distribution of inflammation within carotid atherosclerotic plaques with high-risk morphological features: a comparison between positron emission tomography activity, plaque morphology, and histopathology. Circ Cardiovasc Imaging 2012;5:69-77.

    PubMed  Google Scholar 

  3. Tawakol A, Migrino RQ, Bashian GG, Bedri S, Vermylen D, Cury RC, et al. In vivo 18F-fluorodeoxyglucose positron emission tomography imaging provides a noninvasive measure of carotid plaque inflammation in patients. J Am Coll Cardiol 2006;48:1818-24.

    PubMed  Google Scholar 

  4. Graebe M, Pedersen SF, Borgwardt L, Hojgaard L, Sillesen H, Kjaer A. Molecular pathology in vulnerable carotid plaques: correlation with [18]-fluorodeoxyglucose positron emission tomography (FDG-PET). Eur J Vasc Endovasc Surg 2009;37:714-21.

    CAS  PubMed  Google Scholar 

  5. Font MA, Fernandez A, Carvajal A, Gamez C, Badimon L, Slevin M, et al. Imaging of early inflammation in low-to-moderate carotid stenosis by 18-FDG-PET. Front Biosci. 200914:3352-60.

    CAS  Google Scholar 

  6. Menezes LJ, Kotze CW, Agu O, Richards T, Brookes J, Goh VJ, et al. Investigating vulnerable atheroma using combined (18)F-FDG PET/CT angiography of carotid plaque with immunohistochemical validation. J Nucl Med 2011;52:1698-703.

    PubMed  Google Scholar 

  7. Saito H, Kuroda S, Hirata K, Magota K, Shiga T, Tamaki N, et al. Validity of dual MRI and F-FDG PET imaging in predicting vulnerable and inflamed carotid plaque. Cerebrovasc Dis 2013;35:370-7.

    PubMed  Google Scholar 

  8. Taqueti VR, Di Carli MF, Jerosch-Herold M, Sukhova GK, Murthy VL, Folco EJ, et al. Increased microvascularization and vessel permeability associate with active inflammation in human atheromata. Circ Cardiovasc Imaging 2014;7:920-9.

    PubMed  PubMed Central  Google Scholar 

  9. Skagen K, Johnsrud K, Evensen K, Scott H, Krohg-Sorensen K, Reier-Nilsen F, et al. Carotid plaque inflammation assessed with (18)F-FDG PET/CT is higher in symptomatic compared with asymptomatic patients. Int J Stroke 2015;10:730-6.

    PubMed  Google Scholar 

  10. Cocker MS, Spence JD, Hammond R, deKemp RA, Lum C, Wells G, et al. [18F]-Fluorodeoxyglucose PET/CT imaging as a marker of carotid plaque inflammation: Comparison to immunohistology and relationship to acuity of events. Int J Cardiol 2018;271:378-86.

    PubMed  Google Scholar 

  11. Johnsrud K, Skagen K, Seierstad T, Skjelland M, Russell D, Revheim ME. (18)F-FDG PET/CT for the quantification of inflammation in large carotid artery plaques. J Nucl Cardiol 2019;26:883-93.

    PubMed  Google Scholar 

  12. Sadeghi MM. (18)F-FDG PET and vascular inflammation: time to refine the paradigm? J Nucl Cardiol 2015;22:319-24.

    PubMed  PubMed Central  Google Scholar 

  13. Al-Mashhadi RH, Tolbod LP, Bloch LO, Bjorklund MM, Nasr ZP, Al-Mashhadi Z, et al. (18)Fluorodeoxyglucose Accumulation in arterial tissues determined by PET signal analysis. J Am Coll Cardiol 2019;74:1220-32.

    CAS  PubMed  Google Scholar 

  14. Figueroa AL, Abdelbaky A, Truong QA, Corsini E, MacNabb MH, Lavender ZR, et al. Measurement of arterial activity on routine FDG PET/CT images improves prediction of risk of future CV events. JACC Cardiovasc Imaging 2013;6:1250-9.

    PubMed  Google Scholar 

  15. Iwatsuka R, Matsue Y, Yonetsu T, O’Uchi T, Matsumura A, Hashimoto Y, et al. Arterial inflammation measured by (18)F-FDG-PET-CT to predict coronary events in older subjects. Atherosclerosis 2018;268:49-54.

    CAS  PubMed  Google Scholar 

  16. Paulmier B, Duet M, Khayat R, Pierquet-Ghazzar N, Laissy JP, Maunoury C, et al. Arterial wall uptake of fluorodeoxyglucose on PET imaging in stable cancer disease patients indicates higher risk for cardiovascular events. J Nucl Cardiol 2008;15:209-17.

    PubMed  Google Scholar 

  17. Rominger A, Saam T, Wolpers S, Cyran CC, Schmidt M, Foerster S, et al. 18F-FDG PET/CT identifies patients at risk for future vascular events in an otherwise asymptomatic cohort with neoplastic disease. J Nucl Med 2009;50:1611-20.

    PubMed  Google Scholar 

  18. Tawakol A, Fayad ZA, Mogg R, Alon A, Klimas MT, Dansky H, et al. Intensification of statin therapy results in a rapid reduction in atherosclerotic inflammation: results of a multicenter fluorodeoxyglucose-positron emission tomography/computed tomography feasibility study. J Am Coll Cardiol 2013;62:909-17.

    CAS  PubMed  Google Scholar 

  19. Tawakol A, Unizony S, Osborne MT, Massarotti E, Giles JT. Evolving use of molecular imaging in research and in practice. Arthritis Rheumatol 2019;71:1207-10.

    PubMed  PubMed Central  Google Scholar 

  20. Emami H, Singh P, MacNabb M, Vucic E, Lavender Z, Rudd JH, et al. Splenic metabolic activity predicts risk of future cardiovascular events: demonstration of a cardiosplenic axis in humans. JACC Cardiovasc Imaging 2015;8:121-30.

    PubMed  PubMed Central  Google Scholar 

  21. Figueroa AL, Takx RA, MacNabb MH, Abdelbaky A, Lavender ZR, Kaplan RS, et al. Relationship between measures of adiposity, arterial inflammation, and subsequent cardiovascular events. Circ Cardiovasc Imaging. 2016;9:e004043.

    PubMed  PubMed Central  Google Scholar 

  22. Vita T, Murphy DJ, Osborne MT, Bajaj NS, Keraliya A, Jacob S, et al. Association between nonalcoholic fatty liver disease at CT and coronary microvascular dysfunction at myocardial perfusion PET/CT. Radiology 2019;291:330-7.

    PubMed  Google Scholar 

  23. Rosengren A, Hawken S, Ounpuu S, Sliwa K, Zubaid M, Almahmeed WA, et al. Association of psychosocial risk factors with risk of acute myocardial infarction in 11119 cases and 13648 controls from 52 countries (the INTERHEART study): case-control study. Lancet 2004;364:953-62.

    PubMed  Google Scholar 

  24. Anand SS, Islam S, Rosengren A, Franzosi MG, Steyn K, Yusufali AH, et al. Risk factors for myocardial infarction in women and men: insights from the INTERHEART study. Eur Heart J 2008;29:932-40.

    PubMed  Google Scholar 

  25. Chetty R, Stepner M, Abraham S, Lin S, Scuderi B, Turner N, et al. The association between income and life expectancy in the United States, 2001-2014. JAMA 2016;315:1750-66.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Perk J, De Backer G, Gohlke H, Graham I, Reiner Z, European Verschuren M, Guidelines on cardiovascular disease prevention in clinical practice (version), et al. The Fifth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of nine societies and by invited experts). Eur Heart J 2012;2012(33):1635-701.

    Google Scholar 

  27. Dar T, Radfar A, Abohashem S, Pitman RK, Tawakol A, Osborne MT. Psychosocial stress and cardiovascular disease. Curr Treat Opt Cardiovasc Med. 2019;21:23.

    Google Scholar 

  28. Dutta P, Courties G, Wei Y, Leuschner F, Gorbatov R, Robbins CS, et al. Myocardial infarction accelerates atherosclerosis. Nature 2012;487:325-9.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Heidt T, Sager HB, Courties G, Dutta P, Iwamoto Y, Zaltsman A, et al. Chronic variable stress activates hematopoietic stem cells. Nat Med 2014;20:754-8.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Nahrendorf M, Swirski FK. Lifestyle effects on hematopoiesis and atherosclerosis. Circ Res 2015;116:884-94.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Cohen S, Kamarck T, Mermelstein R. A global measure of perceived stress. J Health Soc Behav 1983;24:385-96.

    CAS  PubMed  Google Scholar 

  32. Steptoe A, Kivimaki M. Stress and cardiovascular disease. Nat Rev Cardiol 2012;9:360-70.

    CAS  PubMed  Google Scholar 

  33. Shin LM, Liberzon I. The neurocircuitry of fear, stress, and anxiety disorders. Neuropsychopharmacology 2010;35:169-91.

    PubMed  Google Scholar 

  34. Gray TS, Bingaman EW. The amygdala: corticotropin-releasing factor, steroids, and stress. Crit Rev Neurobiol. 1996;10:155-68.

    CAS  PubMed  Google Scholar 

  35. Kalin NH, Shelton SE, Davidson RJ. The role of the central nucleus of the amygdala in mediating fear and anxiety in the primate J Neurosci. 2004;24:5506-15.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Arnsten AF. Stress signalling pathways that impair prefrontal cortex structure and function Nat Rev Neurosci. 2009;10:410-22.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Schaefer SM, Abercrombie HC, Lindgren KA, Larson CL, Ward RT, Oakes TR, et al. Six-month test-retest reliability of MRI-defined PET measures of regional cerebral glucose metabolic rate in selected subcortical structures. Hum Brain Mapp 2000;10:1-9.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhu Y, Du R, Zhu Y, Shen Y, Zhang K, Chen Y, et al. PET mapping of neurofunctional changes in a posttraumatic stress disorder model. J Nucl Med 2016;57:1474-7.

    CAS  PubMed  Google Scholar 

  39. Fox AS, Oler JA, Shelton SE, Nanda SA, Davidson RJ, Roseboom PH, et al. Central amygdala nucleus (Ce) gene expression linked to increased trait-like Ce metabolism and anxious temperament in young primates. Proc Natl Acad Sci USA 2012;109:18108-13.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Oler JA, Fox AS, Shelton SE, Rogers J, Dyer TD, Davidson RJ, et al. Amygdalar and hippocampal substrates of anxious temperament differ in their heritability. Nature 2010;466:864-8.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Tawakol A, Ishai A, Takx RA, Figueroa AL, Ali A, Kaiser Y, et al. Relation between resting amygdalar activity and cardiovascular events: a longitudinal and cohort study. Lancet 2017;389:834-45.

    PubMed  PubMed Central  Google Scholar 

  42. Goyal A, Dey AK, Chaturvedi A, Elnabawi YA, Aberra TM, Chung JH, et al. Chronic stress-related neural activity associates with subclinical cardiovascular disease in psoriasis: A prospective cohort study. JACC Cardiovasc Imaging 2020;13:465-77.

    PubMed  Google Scholar 

  43. Toczek J, Hillmer AT, Han J, Liu C, Peters D, Emami H et al. FDG PET imaging of vascular inflammation in post-traumatic stress disorder: A pilot case-control study. J Nucl Cardiol 2019.

  44. Fiechter M, Haider A, Bengs S, Maredziak M, Burger IA, Roggo A et al. Sex-dependent association between inflammation, neural stress responses, and impaired myocardial function. Eur J Nucl Med Mol Imaging 2019.

  45. Fiechter M, Roggo A, Burger IA, Bengs S, Treyer V, Becker A, et al. Association between resting amygdalar activity and abnormal cardiac function in women and men: a retrospective cohort study. Eur Heart J Cardiovasc Imaging 2019;20:625-32.

    PubMed  Google Scholar 

  46. Ishai A, Osborne MT, Tung B, Wang Y, Hammad B, Patrich T, et al. Amygdalar metabolic activity independently associates with progression of visceral adiposity. J Clin Endocrinol Metabol 2019;104:1029-38.

    Google Scholar 

  47. Osborne MT, Ishai A, Hammad B, Tung B, Wang Y, Baruch A, et al. Amygdalar activity predicts future incident diabetes independently of adiposity. Psychoneuroendocrinology. 2018;100:32-40.

    PubMed  Google Scholar 

  48. Tawakol A, Osborne MT, Wang Y, Hammed B, Tung B, Patrich T, et al. Stress-associated neurobiological pathway linking socioeconomic disparities to cardiovascular disease. J Am Coll Cardiol 2019;73:3243-55.

    PubMed  PubMed Central  Google Scholar 

  49. Osborne MT, Radfar A, Hassan MZO, Abohashem S, Oberfeld B, Patrich T, et al. A neurobiological mechanism linking transportation noise to cardiovascular disease in humans. Eur Heart J 2020;41:772-82.

    PubMed  Google Scholar 

  50. Scally C, Abbas H, Ahearn T, Srinivasan J, Mezincescu A, Rudd A, et al. Myocardial and systemic inflammation in acute stress-induced (Takotsubo) cardiomyopathy. Circulation 2019;139:1581-92.

    PubMed  PubMed Central  Google Scholar 

  51. Hiestand T, Hanggi J, Klein C, Topka MS, Jaguszewski M, Ghadri JR, et al. Takotsubo syndrome associated with structural brain alterations of the limbic system. J Am Coll Cardiol 2018;71:809-11.

    PubMed  Google Scholar 

  52. Templin C, Hanggi J, Klein C, Topka MS, Hiestand T, Levinson RA, et al. Altered limbic and autonomic processing supports brain-heart axis in Takotsubo syndrome. Eur Heart J 2019;40:1183-7.

    PubMed  PubMed Central  Google Scholar 

  53. Holzel BK, Carmody J, Evans KC, Hoge EA, Dusek JA, Morgan L, et al. Stress reduction correlates with structural changes in the amygdala. Soc. Cogn. Affect. Neurosci 2010;5:11-7.

    PubMed  Google Scholar 

  54. Bokhari S, Schneider RH, Salerno JW, Rainforth MV, Gaylord-King C, Nidich SI. Effects of cardiac rehabilitation with and without meditation on myocardial blood flow using quantitative positron emission tomography: A pilot study. J Nucl Cardiol 2019.

  55. Taren AA, Gianaros PJ, Greco CM, Lindsay EK, Fairgrieve A, Brown KW, et al. Mindfulness meditation training alters stress-related amygdala resting state functional connectivity: a randomized controlled trial. Soc Cogn Affect Neurosci 2015;10:1758-68.

    PubMed  PubMed Central  Google Scholar 

  56. Malarkey WB, Jarjoura D, Klatt M. Workplace based mindfulness practice and inflammation: a randomized trial. Brain Behav Immun 2013;27:145-54.

    PubMed  Google Scholar 

  57. Kim Y, Lee YS, Kim MG, Song YK, Kim Y, Jang H et al. The effect of selective serotonin reuptake inhibitors on major adverse cardiovascular events: a meta-analysis of randomized-controlled studies in depression. Int Clin Psychopharmacol 2018;9-17.

  58. Blumenthal JA, Sherwood A, Smith PJ, Watkins L, Mabe S, Kraus WE, et al. Enhancing cardiac rehabilitation with stress management training: A Randomized, Clinical Efficacy Trial. Circulation 2016;133:1341-50.

    PubMed  PubMed Central  Google Scholar 

  59. Bhasin MK, Dusek JA, Chang BH, Joseph MG, Denninger JW, Fricchione GL, et al. Relaxation response induces temporal transcriptome changes in energy metabolism, insulin secretion and inflammatory pathways. PLoS ONE. 2013;8:e62817.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Levine GN, Lange RA, Bairey-Merz CN, Davidson RJ, Jamerson K, Mehta PK et al. Meditation and cardiovascular risk reduction: a scientific statement from the American Heart Association. J Am Heart Assoc 2017;6.

  61. Bascunana P, Hess A, Borchert T, Wang Y, Wollert KC, Bengel FM, et al. (11)C-methionine PET identifies astroglia involvement in heart-brain inflammation networking after acute myocardial infarction. J Nucl Med 2020;61:977-80.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Shin S, Bai L, Oiamo TH, Burnett RT, Weichenthal S, Jerrett M, et al. Association between road traffic noise and incidence of diabetes mellitus and hypertension in Toronto, Canada: a population-based cohort study. J Am Heart Assoc. 2020;9:e013021.

    PubMed  PubMed Central  Google Scholar 

Download references

Disclosures

Dr. Tawakol received institutional grants from Genentech and Actelion and personal fees from Actelion and Esperion for unrelated work. Dr. Osborne received consulting fees from Intrinsic Imaging, LLC for unrelated work. The remaining authors have no disclosures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Tawakol MD.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Funding

Dr. Osborne is partially supported by United States National Institutes of Health (NIH) #KL2TR002542 and Dr. Tawakol by NIH #P01HL131478, #R33HL141047, and #R01HL137913.

This article includes a PowerPoint file that should be made available as ESM on SpringerLink.Please include the standard Springer ESM text in the note/footer on the first article page. Below this, include the following text: “The authors of this article have provided a PowerPoint file, available for download at SpringerLink, which summarizes the contents of the paper and is free for re-use at meetings and presentations. Search for the article DOI on SpringerLink.com.

The authors have also provided an audio summary of the article, which is available to download as ESM, or to listen to via the JNC/ASNC Podcast.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Osborne, M.T., Abohashem, S., Zureigat, H. et al. Multimodality molecular imaging: Gaining insights into the mechanisms linking chronic stress to cardiovascular disease. J. Nucl. Cardiol. 28, 955–966 (2021). https://doi.org/10.1007/s12350-020-02424-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12350-020-02424-6

Keywords

Navigation