Skip to main content
Log in

Differential effects of variation in athletes training on myocardial morphophysiological adaptation in men: Focus on 123I-MIBG assessed myocardial sympathetic activity

  • Original Article
  • Published:
Journal of Nuclear Cardiology Aims and scope

Abstract

Purpose

High intensity systematic physical training leads to myocardial morphophysiological adaptations. The goal of this study was to investigate if differences in training were correlated with differences in cardiac sympathetic activity.

Methods

58 males (19-47 years), were divided into three groups: strength group (SG), (20 bodybuilders), endurance group (EG), (20 endurance athletes), and a control group (CG) comprising 18 healthy non-athletes. Cardiac sympathetic innervation was assessed by planar myocardial 123I-metaiodobenzylguanidine scintigraphy using the early and late heart to mediastinal (H/M) ratio, and washout rate (WR).

Results

Left ventricular mass index was significantly higher both in SG (P < .001) and EG (P = .001) compared to CG without a statistical significant difference between SG and EG (P = .417). The relative wall thickness was significantly higher in SG compared to CG (P < .001). Both left ventricular ejection fraction and the peak filling rate showed no significant difference between the groups. Resting heart rate was significantly lower in EG compared to CG (P = .006) and SG (P = .002). The late H/M ratio in CG was significantly higher compared to the late H/M for SG (P = .003) and EG (P = .004). However, WR showed no difference between the groups. There was no significant correlation between the parameters of myocardial sympathetic innervation and parameters of left ventricular function.

Conclusions

Strength training resulted in a significant increase in cardiac dimensions. Both strength and endurance training seem to cause a reduction in myocardial sympathetic drive. However, myocardial morphological and functional adaptations to training were not correlated with myocardial sympathetic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Strauss HC, Bigger JT, Saroff AL, Giardina EG. Electrophysiologic evaluation of sinus node function in patients with sinus node dysfunction. Circulation 1976;53:763-76.

    Article  CAS  PubMed  Google Scholar 

  2. Brandao MU, Wajngarten M, Rondon E, Giorgi MC, Hironaka F, Negrao CE. Left ventricular function during dynamic exercise in untrained and moderately trained subjects. J Appl Physiol 1993;75:1989-95.

    CAS  PubMed  Google Scholar 

  3. D’Andrea A, Caso P, Severino S, Galderisi M, Sarubbi B, Limongelli G, et al. Effects of different training protocols on left ventricular myocardial function in competitive athletes: A Doppler tissue imaging study. Ital Heart J 2002;3:34-40.

    PubMed  Google Scholar 

  4. Menapace FJ, Hammer WJ, Ritzer TF, Kessler KM, Warner HF, Spann JF, et al. Left ventricular size in competitive weight lifters: An echocardiographic study. Med Sci Sports Exerc 1982;14:72-5.

    Article  CAS  PubMed  Google Scholar 

  5. Pelliccia A, Maron BJ, Spataro A, Proschan MA, Spirito P. The upper limit of physiologic cardiac hypertrophy in highly trained elite athletes. N Engl J Med 1991;324:295-301.

    Article  CAS  PubMed  Google Scholar 

  6. Pluim BM, Zwinderman AH, van der Laarse A, van der Wall EE. The athlete’s heart. A meta-analysis of cardiac structure and function. Circulation 2000;101:336-44.

    Article  CAS  PubMed  Google Scholar 

  7. Spirito P, Pelliccia A, Proschan MA, Granata M, Spataro A, Bellone P, et al. Morphology of the “athlete’s heart” assessed by echocardiography in 947 elite athletes representing 27 sports. Am J Cardiol 1994;74:802-6.

    Article  CAS  PubMed  Google Scholar 

  8. Chapman JH. Profound sinus bradycardia in the athletic heart syndrome. J Sports Med Phys Fitness 1982;22:45-8.

    CAS  PubMed  Google Scholar 

  9. Matsuo S, Nakamura Y, Takahashi M, Matsui T, Kusukawa J, Yoshida S, et al. Cardiac sympathetic dysfunction in an athlete’s heart detected by 123I-metaiodobenzylguanidine scintigraphy. Jpn Circ J 2001;65:371-4.

    Article  CAS  PubMed  Google Scholar 

  10. Estorch M, Serra-Grima R, Flotats A, Mari C, Berna L, Catafau A, et al. Myocardial sympathetic innervation in the athlete’s sinus bradycardia: Is there selective inferior myocardial wall denervation? J Nucl Cardiol 2000;7:354-8.

    Article  CAS  PubMed  Google Scholar 

  11. Lang RM, Bierig M, Devereux RB, Flachskampf FA, Foster E, Pellikka PA, et al. Recommendations for chamber quantification: A report from the American Society of Echocardiography’s Guidelines and Standards Committee and the Chamber Quantification Writing Group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology. J Am Soc Echocardiogr 2005;18:1440-63.

    Article  PubMed  Google Scholar 

  12. Sahn DJ, DeMaria A, Kisslo J, Weyman A. Recommendations regarding quantitation in M-mode echocardiography: Results of a survey of echocardiographic measurements. Circulation 1978;58:1072-83.

    Article  CAS  PubMed  Google Scholar 

  13. Schiller NB, Shah PM, Crawford M, DeMaria A, Devereux R, Feigenbaum H, et al. Recommendations for quantitation of the left ventricle by two-dimensional echocardiography. American Society of Echocardiography Committee on Standards, Subcommittee on Quantitation of Two-Dimensional Echocardiograms. J Am Soc Echocardiogr 1989;2:358-67.

    Article  CAS  PubMed  Google Scholar 

  14. Gardin JM, Adams DB, Douglas PS, Feigenbaum H, Forst DH, Fraser AG, et al. Recommendations for a standardized report for adult transthoracic echocardiography: A report from the American Society of Echocardiography’s Nomenclature and Standards Committee and Task Force for a Standardized Echocardiography Report. J Am Soc Echocardiogr 2002;15:275-90.

    Article  PubMed  Google Scholar 

  15. Devereux RB, Alonso DR, Lutas EM, Gottlieb GJ, Campo E, Sachs I, et al. Echocardiographic assessment of left ventricular hypertrophy: Comparison to necropsy findings. Am J Cardiol 1986;57:450-8.

    Article  CAS  PubMed  Google Scholar 

  16. Corbett JR, Akinboboye OO, Bacharach SL, Borer JS, Botvinick EH, DePuey EG, et al. Equilibrium radionuclide angiocardiography. J Nucl Cardiol 2006;13:e56-79.

    Article  PubMed  Google Scholar 

  17. Thom A, Smanio P, editors. Medicina Nuclear em Cardiologia - da Metodologia à Clínica. São Paulo: Atheneu; 2007. p. 176-9.

    Google Scholar 

  18. Flotats A, Carrio I, Agostini D, Le Guludec D, Marcassa C, Schaffers M, et al. Proposal for standardization of 123I-metaiodobenzylguanidine (MIBG) cardiac sympathetic imaging by the EANM Cardiovascular Committee and the European Council of Nuclear Cardiology. Eur J Nucl Med Mol Imaging 2010;37:1802-12.

    Article  PubMed  Google Scholar 

  19. Chirumamilla A, Travin MI. Cardiac applications of 123I-mIBG imaging. Semin Nucl Med 2011;41:374-87.

    Article  PubMed  Google Scholar 

  20. Fagard RH. Athlete’s heart: A meta-analysis of the echocardiographic experience. Int J Sports Med 1996;17:S140-4.

    Article  PubMed  Google Scholar 

  21. Koyama K, Inoue T, Hasegawa A, Oriuchi N, Okamoto E, Tomaru Y, et al. Alternating myocardial sympathetic neural function of athlete’s heart in professional cycle racers examined with iodine-123-MIBG myocardial scintigraphy. Ann Nucl Med 2001;15:307-12.

    Article  CAS  PubMed  Google Scholar 

  22. Dae MW, O’Connell JW, Botvinick EH, Ahearn T, Yee E, Huberty JP, et al. Scintigraphic assessment of regional cardiac adrenergic innervation. Circulation 1989;79:634-44.

    Article  CAS  PubMed  Google Scholar 

  23. Carrio I, Cowie MR, Yamazaki J, Udelson J, Camici PG. Cardiac sympathetic imaging with mIBG in heart failure. JACC Cardiovasc Imaging 2010;3:92-100.

    Article  PubMed  Google Scholar 

  24. Somsen GA, Verberne HJ, Fleury E, Righetti A. Normal values and within-subject variability of cardiac I-123 MIBG scintigraphy in healthy individuals: Implications for clinical studies. J Nucl Cardiol 2004;11:126-33.

    Article  PubMed  Google Scholar 

  25. Morozumi T, Kusuoka H, Fukuchi K, Tani A, Uehara T, Matsuda S, et al. Myocardial iodine-123-metaiodobenzylguanidine images and autonomic nerve activity in normal subjects. J Nucl Med 1997;38:49-52.

    CAS  PubMed  Google Scholar 

  26. Tsuchimochi S, Tamaki N, Tadamura E, Kawamoto M, Fujita T, Yonekura Y, et al. Age and gender differences in normal myocardial adrenergic neuronal function evaluated by iodine-123-MIBG imaging. J Nucl Med 1995;36:969-74.

    CAS  PubMed  Google Scholar 

Download references

Disclosure

None.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Douglas Pinheiro Miranda MSc or Euclides Timóteo da Rocha MD, PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miranda, D.P., dos Santos, M.J., Salemi, V.M.C. et al. Differential effects of variation in athletes training on myocardial morphophysiological adaptation in men: Focus on 123I-MIBG assessed myocardial sympathetic activity. J. Nucl. Cardiol. 21, 570–577 (2014). https://doi.org/10.1007/s12350-014-9876-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12350-014-9876-6

Keywords

Navigation